Optimization Methods



Problem specification

Suppose we have a cost function (or objective function)

f(x):RY — R

Our aim is to find values of the parameters (decision variables) x that
minimize this function

x" = arg min f(x)
X
Subject to the following constraints:
. equality: c;i(x) =0
* nonequality: ci(x) >0

If we seek a maximum of f(x) (profit function) it is equivalent to seeking
a minimum of —f(x)



Types of minima

f(x)

weak strong
strong
local local local
minimum strong  minimum

minimum
1
1 1
1 1
1 1
1 1
1 1

feasible region X

« which of the minima is found depends on the starting

point



lterative Optimization Algorithm

« Startatx, k=0.

1. Compute a search direction p,

2. Compute a step length «,, such that f(x, + oy p, ) < f(X,)

k = k+1
3. Update x,,, = X, + o, P, +

4. Check for convergence (stopping criteria)
e.g. df/dx=0or

Reduces optimization in N dimensions to a series of (1D) line minimizations



Contractive Mapping

Lk+1 = g(m)

« Lipschitz constant L<1 lg(z) — g(y)[| < Lilz —y|
Nonlinear Contractive Mapping: xx+1 = cos(x)
2.0 = g(x) =cos(x) s
— y=x o
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Unconstrained univariate optimization

f(@)

min f(z)

How to determine the minimum?
« Search methods (Dichotomous, Fibonacci, Golden-Section)

«  Approximation methods
1. Polynomial interpolation
2. Newton method

« Combination of both (alg. of Davies, Swann, and Campey)
* Inexact Line Search (Fletcher)



1D function

As an example consider the function

f(x) =0140.12 + 27 /(0.1 + 2%

(Evaluation of the function is expensive.)



Search methods

« Start with the interval ("bracket”) [x, X] such that the
minimum x* lies inside.

« Evaluate f(x) at two point inside the bracket.
* Reduce the bracket.
* Repeat the process.

« Can be applied to any function and differentiability is not
essential.



Search methods

f(x)
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Dichotomous

Fibonacci: ral 5 -
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|Golden-Section Search

divides intervals by
K=1.6180

e
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Polynomial interpolation

 Bracket the minimum.

« Fit a quadratic or cubic polynomial which
Interpolates f(x) at some points in the interval.

« Jump to the (easily obtained) minimum of the
polynomial.

* Throw away the worst point and repeat the
Process.



Polynomial interpolation
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« Quadratic interpolation using 3 points, 2 iterations

« Other methods to interpolate?
— 2 points and one gradient
— Cubic interpolation



Newton method

Fit a quadratic approximation to f(x) using both gradient and
curvature information at x.

« Expand f(x) locally using a Taylor series.

. . . ) . 1 _. i ﬁ
f(x+dx) = f(x) + f'(x)dr + §j”(3;)()$2 1 o(82?)

* Find the dx which minimizes this local quadratic
approximation. ()

or = —=
T )

« Updatex. x,.1=x, —0x =ux, —



Newton method
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e avoids the need to bracket the root

« quadratic convergence (decimal accuracy doubles
at every iteration)



Newton method

« Global convergence of Newton’s method is poor.
« Often falls if the starting point is too far from the minimum.

Iteration 3 Iteration 3

 In practice, must be used with a globalization strategy
which reduces the step length until function decrease is
assured



Extension to N (multivariate) dimensions

 How big N can be?

— problem sizes can vary from a handful of parameters to
many thousands

« We will consider examples for N=2, so that cost
function surfaces can be visualized.




Taylor expansion

A function may be approximated locally by its Taylor series
expansion about a point x*

f(x"+x)~ f(x") + Vitx + %XTHX

where the gradient V/(x") is the vector

. Tar ot
L1 LN
and the Hessian H(x*) is the symmetric matrix
- o2p
E% T Oxq0xn
H(x") = : :
02 f 0% f
| Oxn Oy drz\ ]




Quadratic functions

| 1
f(x)=a+g'x+ ixTHx

 The vector g and the Hessian H are constant.

« Second order approximation of any function by the Taylor
expansion is a quadratic function.

We will assume only quadratic functions for a while.



Necessary conditions for a minimum

_ |
f(x)=a+glx+ §XTHX

Expand f(x) about a stationary point x* in direction p

since at a stationary point Vf(x*) =0

At a stationary point the behavior is determined by H



 His a symmetric matrix, and so has orthogonal
eigenvectors

Hllz' — )\@-uz- HulH =1

[(x*+au;) = f(x") + 5(1/ “ul Hu,

o 1
— ]L(Xk) + 5(142)\?;

* As |af Increases, f(x* + au;) Increases, decreases
or is unchanging according to whether 4; is
positive, negative or zero



Examples of quadratic functions

Case 1: both eigenvalues positive

1
f(x)=a+g'x+ §XTHX

with B |20 |6 4| positive
a=0, g = [_5()] : H = [4 G| definite

minimum

5



Examples of quadratic functions

Case 2: eigenvalues have different sign

1
f(x)=a+g'x+ §XTHX

. —30 6 0
with a=0, 8=, | H = 0 _|indefinite
15 v

10

-5 0 5 10 15

saddle point



Examples of quadratic functions

Case 3: one eigenvalues is zero
1
f(x)=a+g'x+ §XTHX

with 0 6 0| positive
' 0 (| semidefinite

parabolic cylinder



Optimization for quadratic functions

Assume that H is positive definite
- T L p
[(x)=a+g X—|—§X Hx

Vf(x) =g+ Hx

There is a unigue minimum at

If N Is large, it is not feasible to perform this inversion directly.



How to find descent directions?
Start at x,, k = 0.

Compute a search direction p,

Compute a step length «,, such that f(x, + o, p, ) < f(X,)

Update X1 = X + oy Py

Check for convergence (stopping criteria)



Steepest descent

« Basic principle is to minimize the N-dimensional function
by a series of 1D line-minimizations:

Xkt+1 = Xk T Pk

* The steepest descent method chooses p, to be parallel to
the gradient

Pr = —V f(x)

« Step-size ¢, Is chosen to minimize f(x, + o, p,).
For quadratic forms there is a closed form solution:

| = I;k Pk <[ Prove it! }
p;. Hps




Steepest descent

5 ' 0 5 10 15
Iteration 34, f = -250

« The gradient is everywhere perpendicular to the contour
lines.

* After each line minimization the new gradient is always
orthogonal to the previous step direction (true of any line
minimization).

« Consequently, the iterates tend to zig-zag down the
valley in a very inefficient manner



Conjugate gradient

 Each p, is chosen to be conjugate to all previous search
directions with respect to the Hessian H:

p, Hp; =0,  i#

 The resulting search directions are mutually linearly

independent. \L Prove it! }

 Remarkably, p, can be chosen using only knowledge of
pk_]_1 Vf(xk_l), and Vj(Xk)

_. V1Vt
Pr = V Ji + ( Ji Vi ) Pk—1

ViV i



Conjugate gradient

 An N-dimensional quadratic form can be minimized in at
most N conjugate descent steps.

« 3 different starting points.
« Minimum is reached in exactly 2 steps.



Powell's Algorithm

« Conjugate-gradient method that does not require
derivatives

« Conjugate directions are generated through a series of
line searches

* N-dim gquadratic function is minimized with N(N+1) line
searches



Optimization of general functions

E.g., Rosenbrock’s function:
fla,y) = 100(y —a°)* + (1 — 2)°
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Steepest descent

« The 1D line minimization must be performed using one
of the earlier methods (usually cubic polynomial
Interpolation)
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« The zig-zag behaviour is clear in the zoomed view
* The algorithm crawls down the valley



Conjugate gradient

« Again, an explicit line minimization must be used at
every step

> 15 1 05 0 05 1 15 2
Iteration 98, f = 0.0012006

« The algorithm converges in 98 iterations
« Far superior to steepest descent



Newton method

Expand f(x) by its Taylor series about the point x,

.. - .. - 1L -
[(xp +0%x) ~ f(xp) +glox + 5()XTHk()X

where the gradient is the vector

. =i
_. df Of
gr = V/[(xy) = [——
X1 TN
and the Hessian is the symmetric matrix
02 f 02 f
O}Trl Oxr10x N
H, =H(x;) =] E
92 f 9% f
| Oz N Oz Ox 22\




Newton method

For a minimum we require that V f(x) = 0, and so
Vi) =gr+Hox=0

with solution 90X = —Hglgk. This gives the iterative update

—1
Xp+1 = X — H,; "8

« Iff(x) is quadratic, then the solution is found in one step.
« The method has quadratic convergence (as in the 1D case).
«  The solution 0X = —Hglgk IS guaranteed to be a downhill direction.

. Rather than jump straight to the minimum, it is better to perform a line
minimization which ensures global convergence

1
X1 = X — o Hy gy,

. If H=1 then this reduces to steepest descent.



Newton method - example

2 15 4 05 0 05 1 15
Iteration 18, f = 6.8551e-015

2

« The algorithm converges in only 18 iterations compared
to the 98 for conjugate gradients.

 However, the method requires computing the Hessian
matrix at each iteration — this is not always feasible



Quasi-Newton methods

« If the problem size is large and the Hessian matrix is
dense then it may be infeasible/inconvenient to compute
it directly.

* Quasi-Newton methods avoid this problem by keeping a
“rolling estimate” of H(x), updated at each iteration using
new gradient information.

« Common schemes are due to Broyden, Goldfarb,
Fletcher and Shanno (BFGS), and also Davidson,
Fletcher and Powell (DFP).

« The idea is based on the fact that for quadratic functions

holds Sl — G = H(Xk+1 — X;f_)

and by accumulating g,'s and x,'s we can calculate H.



BFGS example

T2 i T 0 : 05 1 15 2
Iteration 34, f = 3.4588e-008

« The method converges in 34 iterations, compared to
18 for the full-Newton method



Non-linear least squares

It is very common in applications for a cost
function f(x) to be the sum of a large number of
sqguared residuals

10 =3 2

If each residual depends non-linearly on the
parameters x then the minimization of f(x) is a
non-linear least squares problem.



Non-linear least squares

10 =3 2

« The M x N Jacobian of the vector of residuals r is defined
as

o Or, -
oxrq "t Oxp
-](X) — ;
d?“}f 8'?“;1_[
L Ox1 oxr N |

« Consider

e Hence



Non-linear least squares

. For the Hessian holds

+2 7,
auafu Z o, (956,; Z & auaqz

. N Gauss-Newton
@X) ~ 2']']/ ~ approximation

*  Note that the second-order term in the Hessian is multiplied by the
residuals r;.

. In most problems, the residuals will typically be small.
 Also, at the minimum, the residuals will typically be distributed with

mean = 0.

Forthese reasons, the second-order term is often ignored.
. Hence, explicit computation of the full Hessian can again be avoided.



Gauss-Newton example

« The minimization of the Rosenbrock function

f(a,y) = 100(y — 27)* + (1 — 2)?

e can be written as a least-squares problem with
residual vector

(1— )
[ Or orq | _
¥y 3—1 3—j _ [—20:1; 10]
_8—; a_;_ —1 0




Gauss-Newton example

X1 = Xfp — OékH;Zlgk Hj, = QJng

0.5 1 125 2

Iteration 11, f=2.8678e-012

* minimization with the Gauss-Newton approximation with
line search takes only 11 iterations



Levenberg-Marquardt Algorithm

* For non-linear least square problems

« Combines Gauss-Newton with Steepest Descent
« Fast convergence even for very “flat” functions

« Descend directiondx :

— Newton - Steepest Descent
Hix = —g 0X = —g
J'Jox = —J'r

(J'T + M\)ox = —J'r

Gauss-Newton:

(J'T + Adiag(J'I))ox = —=J'r o — 237y
H=2J']




Comparison

45 1 o5 0 05 4 15 2
Iteration 98, f = 0.0012006
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\
\
\\

-2 -1.5 -1 -0.5 0 0.5 ° 1 1.5 2
Iteration 34, f = 3.4588e-008

Quasi-Newton
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Iteration 18, f = 6.8551e-015

Newton
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Iteration 11, f = 2.8678e-012
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Derivative-free optimization

P
Xh highest point

X1 lowest point

X xg centroid of N points
l‘- -

t multiple contraction

g ™

Downhill Tnttal simplex |
simplex iy
method




Downhill Simplex

i —1|6 71*‘55 71|5 71215 71‘4
; 5 A oy Iteration 114, f = 4.0686e-010

£ -15 =1 -05 0 05 1 15 2
Iteration 114, f = 4.0686e-010




Comparison

E . . . . . s | 2 . 05 1 5 2
£ =5 -1 05 0 : 05 1 15 2 Iteration 18, f = 6.8551e-015
Iteration 98, f = 0.0012006

CG Newton
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Iteration 34, f = 3.4588e-008 Iteration 114, f = 4.0686e-010

Quasi-Newton Downhill Simplex



Rates of Convergence

P

o oy — 2P

X* ... minimum
p ... order of convergence
f ... convergence ratio

Linear conv.: p=1, <1
Superlinear conv.: p=1, =0 or p=>2
Quadratic conv.: p=2



Constrained Optimization

f(x):RY — R

x" = arg min f(x)
X

Subject to:
« Equality constraints: a;(x) =0 i=1,2,...,
« Nonequality constraints:  ¢j(z) <0 j=1.2....,

« Constraints define a feasible region, which is nonempty.

The idea Is to convert it to an unconstrained optimization.



Equality constraints

« Minimize f(x) subject to: a;(x) =0  for i=1,2,...,p

« The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of a;(x) with

Lagrange multipliers as the coefficients.

p
V) =) AVa(x")
1=1



f3>1,>1

, 1%<0

inimizer

X*isam

t a minimizer

X 1S N0

o
A
*
<

IS a minimizer

X*

X* IS not a minimizer



3D Example

1 1
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3D Example

) E - X

fix) = 3

Gradients of constraints and objective function are linearly independent.



3D Example

f(x) = fl% + 7% + —:l:%

1 1
3 b — = — [ L) =

fix) =1

Gradients of constraints and objective function are linearly dependent.



Inequality constraints

« Minimize f(x) subjectto: c¢j(z) <0 for J7=1,2,...,q

« The gradient of f(x) at a local minimizer is equal to the
linear combination of the gradients of ¢;(x), which are
active (¢;(x) =0)

« and Lagrange multipliers must be positive, 1; =0, j€ A

VIx*)=—=> uiVe;(x*)

jEA



fs >1,>1

No active constraints at
x*, Vf(x)=0

f,>f,>1,

X* Is a minimizer, x>0



Lagrangien

« We can introduce the function (Lagrangian)
q
L(x, A\, ) +Z)\ a;(x +Z,ujcj(x)
j=1

« The necessary condition for the local minimizer is

oL oL oL
VL(.’E,A,M):O — %:O; E>Y = 0, %:O

and it must be a feasible point (i.e. constraints are
satisfied).

« These are Karush-Kuhn-Tucker conditions



Dual Problem

Primal problem: minimize f(x)
subject to: c¢(z) <0

Lagrangian: L(xz,u) = f(x) + pc(x)
Dual function: ¢(u) = inf L(x, u) IS always concave!

Dual problem: maximize g(u)
subjectto: >0

If f and c convex = sup g = inf f (almost always)



e Linear functions: r.(u) = L(x,u) = f(z)+ pclz)




Toy Case

minz® subjectto 11—z <0 Lz, p=2)

T

L(x,p) = z° + p(1l — x)

Solution Is a saddle point ;|

r=1u=2- 14




Dual Function

27 5 05 1 0 02 04 _ 06 08 1
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Proximal operator

* Problems of type:

1
a” = arg min §Ha —b||3 + Mpla) = prox, ,(b)

o If p(a) closed proper convex
=> e.g. indicator function

prox ,(b) strictly convex
=>

unique minimizer



Examples of prox operators

e L1 norm ->
soft thresholding

p=1 |k — prox(b):= Sx(0)

* |ndicator function of a convex set C ->
projection onto C

p=1Ic — prox; (b):=Ilc(b)



Alternating Direction Method of Multipliers

Gabay et al., 1976

« f, g convex but not necessary smooth

min f(x) + g(Ax)

* e.g..gis L1 norm or positivity constraint
Deconvolution with TV regularization

1
min _ |[Fx — g3 + A D]



Alternating Direction Method of Multipliers

Gabay et al., 1976

« f, g convex but not necessary smooth

min f(x) + g(Ax)

* e.g..gis L1 norm or positivity constraint
 variable splitting

min f(x) +g(z) st. Ax—z=0

« Augmented Lagrangian.

L(x,2,y) = f(x) + g(2z) +y' (Ax — 2) + (p/2)[|Ax — 2|3



Alternating Direction Method of Multipliers

L(x,2z,y) = f(x) + g(z) +y' (Ax —2) + (p/2)[|Ax — 2|3

 ADMM
k41 . : koo k L
x T = argm}:ﬂL(X,Z YY) X minimization
AR arg min L(Xk+1, Z,yk) Z minimization
Z

y* = yF 4 p(AxFT — 2" dual update



ADMM with scaled dual variable

« combine linear and guadratic terms
L(x,2,y) = f(x) + g(z) + y' (Ax —2z) + (p/2)[|Ax — 2|5
= f(x) +9(2) + (p/2)||Ax — z + u||3 + const.
with

u=(1/p)y
ADMM (scaled dual form):

x" = argmin (f(x) + (p/2)]|Ax — 2" + u"|3)

2 = argmin (9(z) + (p/2)|AxP — 2+ uP3)

uk—l—l — uk + (AXk—H . Zk—l—l)



ADMM - example

« Deconvolution with TV regularization
: 2
min(1/2)[|Hx — gf|3 + A[|Dx]|;
« Augmented Lagrangian
L(x,2,v) o« (1/2)|Hx — gll5 + Allz]l1 + (p/2)|[Dx — z + v||3

- ADMM

1) x < argminL(x,z,v) System of linear equations (CG):

x+— (H'H+ pD'D)x =H g+ oD’ (z — v)
2) Z <— arg min L(x, Z, V) Proximal operator (soft-thresholding)

z <+ S)/,(Dx+v)
3) v+ v+ (Dx-—1z)






Quadratic Programming (QP)

« Like in the unconstrained case, it is important to study
guadratic functions. Why?

« Because general nonlinear problems are solved as a
sequence of minimizations of their quadratic
approximations.

* QP with constraints
1
Minimize f(x) = §XTHX +x'p

subject to linear constraints.

H is symmetric and positive semidefinite.



QP with Equality Constraints

L ,, 1
e Minimize f(X)ZixTHXJrXTP

Subjectto: Ax=b

« Ass.: Ais p x N and has full row rank (p<N)

« Convert to unconstrained problem by variable

elimination: 7 is the null space of A

_ +
x=2Z¢+A"Db A+ is the pseudo-inverse.
inimize =3 P p=2Z"(HAD + p)

This quadratic unconstrained problem can be solved, e.g.,
by Newton method.



QP with inequality constraints

f, 1
* Minimize  f(x) = 5x Hx+x'p
Subjectto: Ax>b

« First we check if the unconstrained minimizer x* = —H 'p
IS feasible.
If yes we are done.

If not we know that the minimizer must be on the
boundary and we proceed with an active-set method.

* X, IS the current feasible point
- Ay, is the index set of active constraints at x,
 Next iterate is given by  Xx+1 = Xi + au.dy,



Active-set method

X1 = X + apd, How to find d,?

: : T o
— Toremain active a; Xp41 — b =0 thus

— The objective function at x,+d becomes

_, 1 ..
fru(d) = §dTHd +d’ g + f(xp)

The major step is a QP sub-problem

a?dk =0 e A

where 8k = Vf(Xk)

1
d, = arg n}iin §dTHd +dlg;

subjectto: a;d=0 je€ A,

Two situations may occur: d, = 0

or

d;, # 0

AT:[al..

.a

v




Active-set method

* dk =0
We check if KKT conditions are satisfied

V.L(x,pu) =Hx; +p — Z pja; =0 and p; =0

JE€AL
If YES we are done.

If NO we remove the constraint from the active set.4x with the most
negative /; and solve the QP sub-problem again but this time with
less active constraints.

edy #0

We can move to X1 = X; + d;, but some inactive constraints
may be violated on the way.

In this case, we move by a;d, till the first inactive constraint
becomes active, update A, , and solve the QP sub-problem again
but this time with more active constraints.



General Nonlinear Optimization

=

a bk DN

Minimize f(x)
subject to: a;(x) = 0
c;i(x) >0
where the objective function and constraints are
nonlinear.

For a given {xx. Ax, 1.} approximate Lagrangien by
Taylor series — QP problem

Solve QP — descent direction {9...9,,9,,}
Perform line search in the direction 4, — Xk+1
Update Lagrange multipliers — {Ax+1, 411}
Repeat from Step 1.



General Nonlinear Optimization

q
Lagrangien  L(x, A, u) Z)\ Qi Zu-j(fj(x)

At the kth iterate: {x;., A, p..}
and we want to compute a set of increments:{9... 0,90, }

First order approximation of V, L and constraints:

o VoL(Xpt1: Met1: Bpi1) = V., L(Xpey Ay )+
—FV;{L(XL,.)\L).[JJL,)& -|-VML(XA Al [.LA)(S)\-FV”[ Xk Ay iby,)0,, = 0

© Ci(Xpy1) = oci(xp) + 55vx6i(xk) >0
o a;(Xpi1) & a(xE) + 5gvxai(xk) = ()

These approximate KKT conditions corresponds to a QP program



SQP example

Minimize  f(x,y) = 100(y — 2*)* + (1 — x)’
subjectto: 1.5 —2? — 2% >0




Linear Programming (LP)

LP is common in economy and is meaningful only if it
IS with constraints.

« Two forms:
1. Minimize  f(x) =c'x |
: Ais p x N and has
subject to: Ax = b+

<> 0 full row rank (p<N)

2. Minimize  f(x)=c'x

subject to: Ax>Db

Prove it!
« QP can solve LP. /[ }

. If the LP minimizer exists it must be one of the vertices
of the feasible region.

« Afast method that considers vertices is the Simplex
method.




