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Chapter 1

Introduction

For every produced car there is a quality control process at the end of the assembly line. Most
of modern car making companies still rely on human vision, which can be limited and sometimes
inaccurate. With mathematical development of robust image features and especially with growing
popularity and increasing accuracy of neural networks, it is possible to use computer vision for
detection of faulty parts.

In this work we try to develop a "Proof-of-concept" of automated visual car inspection to
assist employees, as they only have limited time to inspect the whole car. We focus only on
detecting the level of cooling liquid and develop this solution for the needs of large Czech car
making company, Škoda Auto. We were the first to introduce automated visual inspection
solution to the Control block KB8 in this company. At the moment, no other camera hardware
is used there for a similar purpose.

In Chapter 2 we describe the project setup and which equipment we used to acquire the
necessary amount of video material. Because of a limited budget and operational conditions,
we opted for two web cameras to be attached above the conveyor strand to capture real traffic
in high definition. In Figure 1.2 it can be seen, that many types of Octavia and Karoq models
were passing on the same line - different motorizations and versions of Scout and RS may have
different front bumper or engine cover.

In Chapter 3 we give an overview of mathematical methods used for image recognition, from
simple local features using second order derivative on the image function to more advanced
techniques as SIFT [21] and SURF [3], which can be more robust to image transformations such
as change of scale or rotation. We discuss the two methods in depth and show why we have
chosen the latter to be used in our work.

After collecting sufficient amount of data of real factory traffic over several weeks, we then
proceeded to processing the data and creating a database of images of cars, which could then be
used for training the model. In Chapter 4 we describe how Speeded-Up Robust Features (SURF)
was used to detect the exact car position in each video frame and how we decided which parts
of the car should be used as its training dataset. Our goal was to separate each car and extract
only one image of it in a proper location with respect to the camera. Although the company uses
RFID (radio-frequency identification) system for online monitoring of location of every vehicle in
the plant (Figure 1.1), we did not have access to it and had to develop an independent solution
for estimating car position. We had to overcome several obstacles, such as irregularities in car
placement on the line, employees passing between a car and a camera and hence blocking the
view and several instances of workers directly hitting our equipment and shifting it from the
desired position. HSV color space also played vital role as it allowed us to isolate the distinctive
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Figure 1.1: RFID (Radio Frequency Identification) module (yellow box) attached to the roof of
every vehicle is used to provide the car maker with exact localization of the car.

color of the cooling liquid. Chapter 5 then contains our solution for determining the level of the
cooling liquid.

This by itself would be a sufficient way and a complete solution for the cooling liquid level
detection. However, we decided to try and implement machine learning for higher speed and
accuracy. Hence in Chapter 6 we first shortly explain basic concept of neural networks and
summarize several different designs and then describe how we retrained a convolutional neural
network built on U-net architecture to detect and localize the cooling liquid tank. For the
training process we use results from previous chapters to feed the segmentation network with
labeled images of cars and the location of liquid. With this approach we wanted to gain several
thousands of labeled images for training and for validation. We intended to prove, that the
combination of SURF image features and convolutional neural network can result in higher
accuracy and more importantly, remove the process of having to label each individual training
image manually.
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(a) Karoq 1l TSI (b) Karoq 1l TSI (c) Karoq 1l TSI

(d) Karoq 1.5l TSI (e) Karoq 1.5l TSI (f) Karoq 1.5l TSI

(g) Karoq TDI (h) Karoq TDI (i) Karoq TDI

(j) Octavia 1l TSI (k) Octavia 1l TSI (l) Octavia 1l TSI

(m) Octavia RS TSI (n) Octavia RS TSI (o) Octavia RS TSI

(p) Octavia Scout TDI (q) Octavia Scout TDI (r) Octavia Scout TDI

Figure 1.2: Karoq and Octavia with different engines and specifications were passing on the same
line.
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Chapter 2

Data acquisition

Our data was collected on a control block KB8 in Škoda Auto factory in Mladá Boleslav. Before
installing necessary devices for data acquisition, we first visited the facility to familiarize with
the environment and get further details on the requested output of the project, which was to
monitor the level of cooling liquid in a tank inside the engine space. On the control block the
cars are parked manually by employees on the conveyor strand, the bonnet is lifted and the
whole car is thoroughly visually inspected for defects such as misaligned interior padding, not
functioning indicators on a dashboard, discharged battery or other problems that might have
occurred during assembly and been missed during previous inspections. One of such problems is
the mentioned lack of cooling liquid, which frequently occurs in cars that stayed in the factory
longer than expected, e.g. for a change of tyres or for replacement of faulty parts.

During our visit we located possible spots to mount our cameras so that it would be as close
to the car as possible while not obstructing any activity of the workers. We decided to mount
the first camera to the tv screen rig hanging above the strand. This was the lowest possible
placement of a camera above the cars that would not be hit by an opened trunk door. For the
placement of the secondary camera we firstly chose the right-side panel, as the cooling liquid
tank is always located on the right hand side of the vehicle, but then we noticed that the tank
sunk deeper into the engine space on all Karoq models and hence cannot be seen from the right
side.

During our second visit we brought our gear and started assembling the setup. Both cameras
we used were Logitech BRIO 4K Stream Edition webcams. We mounted the camera A on the
side panel at approximately eye height (Figure 2.1a) and pointed it slightly forwards so that the
inside of the engine space could be visible for about 20 seconds. Then we mounted the camera
B on the TV screen above the conveyor strand. The camera pointed downwards and slightly
forward and the engine space of a car could be visible for about 30 seconds. After mounting both
cameras with a duct tape we attached two 5 m USB cables to the railings above the conveyor and
led them to a side panel on which we have chosen to attach the computer for storing data. The
computer was a low profile case Dell machine with a 1TB hard drive. We laid it and attached
it with zip ties on the railing at about 2.50 m high so that it would not be directly visible to a
naked eye (Figure 2.2).

This setup was by no means robust but since it was meant only as a pilot project, we decided
not to invest more resources. The first problem was the position of camera A, which was too far
for detecting the cooling liquid tank. Because we decided to only narrow our focus to Octavia
model we could ignore the Karoqs and thus mount the camera to right hand side, where it was
significantly closer to the liquid tank. The second problem was that a worker hit the camera
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(a) (b)

Figure 2.1: Mounting of a camera A and camera B to the railings above the conveyor.

while standing by and then returned it to a shifted position. This actually happened several
times and we had to manually modify the script in Chapter 4 to account for the changes.

Both cameras were set to only FullHD resolution, which would be sufficient for purposes of
the project but also would keep the size of files reasonably low. We reduced the file size also by
setting the compression standard to HEVC h265, which is about quarter the size of a regular
h264 video. This was important because we needed to record several days of continuous traffic.
The second reason not to record in 4K was the use of passive USB 3.0 cable extensions. With
the length needed to connect both cameras to the computer it would not be possible to transfer
videos in 4K resolution.

The script for recording the video files was written in C++ and ran ceaselessly on the
computer. We wrote it as an endless cycle, that launched in two parallel threads ffmpeg.exe
on both cameras simultaneously. The frame rate was set at only 1 fps and the total duration
was set to 10 minutes per video. During this time all frames were recorded in motion JPEG (M-
JPEG) and after that encoded in h265. We also wanted to avoid recording unnecessary frames,
when the conveyor was stopped because of a break or a shift change. Fortunately, all working
breaks are scheduled regularly as are shift changes and happen at exactly the same time every
day. This allowed us to modify the script to stop recording at those time periods. There were a
few instances when the line was unexpectedly stopped and one car remained under our cameras
even for half an hour, while people were also passing in front of it. We had to account for these
unusual cases and build our systems robust enough.

5



Figure 2.2: Computer was also attached to the construction above the conveyor.
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Chapter 3

Feature space

In the previous chapter we described our process of collecting image data on the control point in
Skoda Auto factory. To understand the methods of processing the data in Chapter 4 an overview
of image recognition techniques is given in this chapter. From a brief historical introduction we
move to a deeper description of Scale Invariant Feature Transform (SIFT) in Section 3.2 which
marked an important milestone in approach to feature detection and description.

SIFTs are important in understanding the Speeded-Up Robust Features (SURF) introduced
several years later that improved the original algorithm by using methods described in Section 3.3.
We used SURF for its robustness and speed and because they are well implemented in Matlab.
After explaining the SURF more in depth we give a short overview of methods following and
improving the before mentioned.

3.1 Computer vision

Attempts in computer vision date back to late 1960s when it was considered to be a simple
problem that would be solved in a few months [35]. However, only a slow progress was made and
most focus was on reconstructing a full 3D structure of the image in order to fully understand
the scene. In the 1980s, image pyramids gained in popularity and scale-space was developed,
while there was an increased activity in using projective invariants in the next decade. In the
2000s, interest point features started to dominate in most research before the boom of neural
networks in recent years. In the following text we dive deeper in the theory of interest based
features as we exploited them in our work. We stem from the work of Tinne Tuytelaars and
Krystian Mikolajczyk as they gave an overview of invariant interest point detectors, how they
evolved over time, how they work and what their respective strengths and weaknesses are [36].

3.1.1 Local features

While simple global features, like color histograms, work surprisingly well, there are several
important instances where they fail. Namely it is their low ability to find correspondences in
image after changes in viewing conditions or partial occlusion. Image segmentation was supposed
to address this issue by segmenting the image in a limited number of regions, with each such
region corresponding to a single object or part thereof, such as a color or texture. However, this
creates a new problem - how to select such regions. Local features tend to solve these issues and
that has brought them massive popularity up until recently.
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It was first noted by F. Attneave in 1954 [1] that information on shape is concentrated at
dominant points having high curvature.

A good local feature should meet the following conditions - invariance, discriminability,
robustness, completeness and independency. The invariant feature, or simply the invariant, is a
functional I that maps the image space such that I(f) depends on the class f belongs to but does
not depend on particular appearance of f [9]. This means that I(f) = I(D(f)) for any f and
any instance of D. Discriminability on the other hand means that features from different classes
should be significantly different (far apart). These two conditions go against each other, as the
most invariant feature would have zero discriminability. For instance digits 6 and 9 would have
the same shape features. Although this would be invariant to rotation it fails to differentiate
between them. After adding a feature of center of mass, the feature would become complete,
which means it could fully recover the original image.

To measure which of all newly proposed detectors is the best (in terms of quality of the feature
for tasks like image matching, object recognition and 3D reconstruction), repeatability score has
been proposed by Schmid, Mohr and Bauckhage (2000). They state, that repeatability explicitly
compares the geometrical stability of the detected interest points between different images of
a given scene taken under varying viewing conditions [31]. While previous methods evaluated
detectors for individual images only, they rather observe if an interest point is "repeated", that
is if the scene point detected in the first image is also accurately detected in the second one.
The final repeatability rate is the percentage of total observed points that are detected in both
images. The changes between their observed pictures were after applying on planar images
transformation like rotation, scale changes, illumination changes, viewpoint changes and adding
noise. This repeatability was used to measure, how much SURF detectors outperform SIFTs.
We will discuss it more in the following sections.

3.1.2 Corner vs blob detectors

Two most intuitive local features are corners and blob-like structures. Both methods have their
strengths but in its basis they are complementary to each other. The former builds on edge
detection where an edge is detected in the point of highest gradient of the image function. As
all images are comprised of pixels, the derivative is approximated in the discrete domain. Since
most images contain noise, which by its nature also has high gradients, the image first has to be
smoothed with a function, most commonly a Gaussian. With use of the convolution theorem

∂

∂x
(f ∗ g) = (

∂f

∂x
) ∗ g (3.1)

it is only needed to compute first the derivative of Gaussian and then convolve it with the image
which is more simple and faster than finding derivatives on the smoothed image. This plays
a vital role in all derivation based detectors and we will expand on it in following sections.
The most famous first-order edge detector is a Canny detector [7] that uses approximations by
derivatives of Gaussian in conjunction with non-maximum suppression and thresholding with
hysteresis.

Corner detectors build on the previous and on assumption that a corner is a point with two
strong and different edges in its neighborhood. This means that the detector looks for regions
that have more than one dominant gradient directions. The corners detected in a 2D image
are points with high curvature and do not necessarily have to correspond to projections of 3D
corners [36]. Probably the most popular corner detector is the Harris detector, proposed by
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Harris and Stephens [11]. It uses second order matrix (auto-correlation matrix), which describes
the gradient distribution in a local neighborhood of a point:

M = σ2Dg(σI) ∗
[

I2x(x, σD) Ix(x, σD)Iy(x, σD)
Ix(x, σD)Iy(x, σD) I2y (x, σD)

]
(3.2)

with

Ix(x, σD) =
∂

∂x
g(σD) ∗ I(x), (3.3)

g(σ) =
1

2πσ2
e−

x2+y2

2σ2 . (3.4)

The σD parameter is the scale of Gaussian kernel for the image derivatives, while σI is the scale
of Gaussian window used for smoothing the image.

The eigenvalues of this matrix represent the principal signal changes in two orthogonal
directions in a neighborhood around the point defined by σI . Hence, a corner can be found
at locations for which both eigenvalues are large. To reduce the high computational time of
computing eigenvalues, Harris and Stephens proposed a cornerness measure Mc with a tunable
parameter λ:

Mc = det(M)− λTrace (M). (3.5)

After extracting local maxima of this function, using non-maximum suppression, the interest
points are translation and rotation invariant.

Although the original Harris detector is widely used, it is not scale invariant. Detection
of blob-like structures was exploited for automatic scale selection. Introduced by Lindeberg
[20], interest points are detected at their own characteristic scale. Improving this method,
Mikolajczyk and Schmid [23] created robust and scale-invariant feature detectors called Harris-
Laplace and Hessian-Laplace. They used the determinant of the Hessian matrix to select location
and Laplacian to select scale. Together with approximating the Laplacian of Gaussian (LoG)
by a Difference of Gaussian (DoG) filter (Lowe [21]), Hessian-based detectors are more stable,
repeatable and faster.

3.2 Scale Invariant Feature Transform (SIFT)

A. Lowe introduced in 1999 his set of scale invariant feature detectors and descriptors - SIFT.
This was an essential step in this field of research, so although for our work we were using SURFs,
which were introduced in 2008, we give a thorough explanation of this method as the SURF build
on and expand the research by Lowe. SIFT uses the following structure to generate a feature set
[21]:

• Scale-space extrema detection

• Keypoint localization

• Orientation assignment

• Keypoint descriptor

Scale space was introduced in 1983 by A. P. Witkin [38]. He drew from previous observations
that local features are detected with derivatives taken over certain neighborhood. However, the
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Figure 3.1: A typical 1 dimensional scale-space image from [17] with increasing σ (on the bottom)
and the contours of zero-crossing points of second derivatives of the image (on the top). The
vertical dotted lines mark inflection points for the lowest scale σ0. The horizontal dotted lines
and their corresponding crosses show distances of inflexion points after smoothing with kernel
size of σk.

specific size of the neighborhood is unknown. Lindeberg observed, that Gaussians are optimal
for scale-space analysis [19]. To create the scale-space, Witkin first applied whole spectrum of
scales on the image. The scales are σ values of a Gaussian. After taking the second derivative
of a smoothed image, inflection points can be found at zero-crossings.

A simple 1D signal example with zero-crossings plotted against the scale can be seen at Figure
3.1. The zero-crossing curves of two neighboring inflection points always connect at certain scale
σ. Smaller changes close quickly while more significant jumps (in image processing corresponding
to more dominant edges) close as arches at much higher scales (σk in the figure). Witkin then
introduced the interval tree which reduces the scale space image to a simple tree, concisely
but completely describing the qualitative structure of the signal over all scales of observation.
This representation shows how much stable are zero-crossings over different scales. A top level
description can be achieved by iteratively removing nodes from the tree, splicing out nodes that
are less stable than any of their parents and off springs.

For 2D images, finding local maxima in scale-space of LoG gives interest points. The scale-
space of an image is defined [22] as a function L(x, y, σ), that is produced from the convolution
over x and y of a variable-scale Gaussian G(x, y, σ) (Equation 3.4), with an input image I(x, y):

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (3.6)

To find keypoint locations in scale-space, Lowe used [21] approximating Laplacian of Gaussian
(LoG) with Difference of Gaussian (DoG) which can be computed from the difference of two
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nearby scales separated by a constant multiplicative factor k:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, σ)− L(x, y, σ).
(3.7)

The approximation of LoG using DoG is based on the heat diffusion equation:

∂G

∂σ
= σ∆G. (3.8)

From the finite difference approximation using the difference of nearby scales at kσ and σ we
get:

σ∆G =
∂G

∂σ
≈ G(x, y, kσ)−G(x, y, σ)

kσ − σ
(3.9)

and therefore,

G(x, y, kσ)−G(x, y, σ) ≈ (k − 1)σ2∆G. (3.10)

This means that the Laplacian of Gaussian can be computed as a subtraction of applied
Gaussian filters on the image, with parameter kσ and σ respectively. The factor (k − 1) in
Equation 3.10 is a constant over all scales and does not influence extrema location. Parameter
σ2 on the right hand side of the Equation 3.10now is the scale normalization required for the
scale invariant Laplacian. An efficient way to compute DoG can be seen in Figure 3.2. At first,
a Gaussian is applied to the image at different scales, which forms an octave. Each two adjacent
images in an octave are subtracted, creating a Laplacian. After completing a new octave, these
images are subsampled by taking only every second pixel. By repeating this process, a scale-space
pyramid is created.

To find the local maxima or minima of D(x, y, σ), each sample point is compared to its 8
nearest neighbors as well as to the 9 points in the scale above and the scale below (see Figure
3.3). If it is larger or smaller than all 26 neighboring points, then it is a potential interest point.
Then a closest point is found in the next level of the pyramid and compared to its neighbors in
the same manner.

After choosing candidates from the extrema detection, outliers are rejected. Those are
selected based on the information of location, scale and ratio of principal curvatures. This
allows points to be rejected if they have low contrast or are poorly localized along an edge. An
improved method for keypoint localization has been developed by Brown and Lowe in 2002 [5] for
better matching and stability. Instead of simply locating keypoints at location and scale of the
central sample point, they suggested fitting a 3D quadratic function to the local sample point.
It uses the Taylor expansion series of the scale-space function:

D(x) = D +
∂DT

∂x
x+

1

2
xT
∂2D

∂x2
x. (3.11)

The sub-pixel interest point location is taken as the extremum of this function

x̂ = −∂
2D−1

∂x2
∂D

∂x
. (3.12)

Evaluating the function D(x̂) at the extremum is useful for rejecting unstable extrema with low
contrast. Usually, all extrema points with |D(x̂)| ≤ 0.03 are discarded.
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Figure 3.2: [22] For each octave of scale space, the image is repeatedly convolved with Gaussian.
This produces a set of scale space images (on the left). To produce the Difference of Gaussian,
two neighboring Gaussian images are subtracted. Then each image is downsampled and the
process is repeated.

Figure 3.3: Maxima and minima of the Difference of Gaussian images are detected by comparing
a pixel (marked with x) to its 26 neighbors in 3x3 regions at the current and adjacent scales [22].
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Further keypoints rejection is necessary for detector stability. The Difference of Gaussian has
a strong response along edges. If we assume DoG as a surface, then a poorly defined peak would
have a large principal curvature (PC) along one edge while a small one in the perpendicular
region. Principal curvature can be computed from Hessian matrix:

H =

[
Dxx Dxy

Dxy Dyy

]
, (3.13)

where the differences are estimated by taking differences of neighboring sample points.
By using what Harris and Stephens proposed [11] (as we discussed in the previous section),

the exact value of eigenvalues does not have to be computed if we are interested only in their
ratio. Let α be the eigenvalue with the largest magnitude and β with the smallest. Then the
sum of eigenvalues corresponds to the trace of H and their product to the determinant:

Trace (H) = Dxx +Dyy = α+ β (3.14)

det(H) = DxxDyy − (Dxy)
2 = αβ. (3.15)

Now the outliers can be simply removed by comparing the ratio of the trace and determinant
to a fraction:

Trace (H)2

det(H)
<

(r + 1)2

r
, (3.16)

where r = α
β . The fraction on the right hand side of the equation is at a minimum when the

two eigenvalues are equal and it increases with r. From experiment by Lowe [22], keypoints are
eliminated if they have a ratio between the principal curvature greater than 10 (r > 10).

The next step in SIFT description is orientation assignment. Each key location is assigned a
canonical orientation so that the image descriptors are invariant to rotation [21]. First, the scale
of each point is used to select a corresponding Gaussian to create a smoothed image L(x, y) on
which a gradient magnitude and direction are computed using pixel differences:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.17)

Θ(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))). (3.18)

Then within a region around each interest point, an orientation histogram of 36 bins is formed
to cover the 360 degree range of rotations. Each histogram sample is also weighted by both its
gradient magnitude and a Gaussian-wighted window of 1.5 times the size of scale of the point.
This, together with previous operations assigns to each keypoint an image location, scale and
orientation. The objective, however, is to create a local image descriptor, that would be highly
distinctive yet as invariant as possible.

The resulting SIFT descriptor, as proposed by Lowe [22], can be now simply described with
Figure 3.4. For each detected keypoint a gradient magnitude and orientation is computed in a
16x16 neighborhood and weighted with a Gaussian at corresponding scale (left-hand side of the
figure). The circular window illustrates weighting of gradients with a Gaussian at 1.5 times the
scale, which of course stresses more the gradients around the keypoint while giving less emphasis
on those further away. The area is then divided into 4x4 blocks and for each block an 8 bin
histogram of gradient orientation is calculated (right-hand side). Hence, the SIFT descriptor is a
128 dimensional vector. This vector is also normalized to reduce effects of illumination changes.

Final step in image recognition is matching a new image to the database of training images.
SIFT finds the nearest neighbor using Euclidean distance. To prevent false positives and to make
the matching more efficient, the ratio of distances of the best and 2nd best match is observed. For
larger values, close to 1, a possible match is found but smaller values are discarded as ambiguous.

13



Figure 3.4: The SIFT descriptor analyses a neighborhood of a keypoint by computing relative
orientation and magnitude of gradients. The area is then divided into 4x4 regions, with each
region being assigned an 8 bin histogram. These histograms concatenated form a 128D descriptor.
In this figure, only 8x8 area is combined to a 2x2 descriptor, whereas in reality a 16x16 area is
used for 4x4 descriptors [3].

3.3 Speeded-Up Robust Features (SURF)

Partially building on SIFT, H. Bay, A. Ess, T. Tuytelaars and L. Van Gool first presented
in 2006 their scale and rotation invariant feature detector and descriptor called Speeded-Up
Robust Features (SURF) [3]. It also uses Hessian matrix-based measure for detectors, but by
implementing several different techniques, like integral images for convolution and Haar wavelet
response for description, it can be computed several times faster and is more robust to certain
types of transformation.

For some of these reasons we opted for SURF above other image feature detectors and
descriptors. That is why we discuss them more in depth in this section and explain, how they
draw on SIFT and where it differs. Most of the information we collected from the original paper
[3].

3.3.1 Integral images

Integral images play a vital role in improving the speed of SURF against its predecessors.
Integral image, formerly known as summed area table (F. C. Crow 1984 [8]), uses an intermediate
representation of the original image. Each new pixel is computed as a sum of pixel intensities
from the origin. More specifically, as noted by P. Viola and M. Jones (2000 [37]),

ii(x, y) =
∑
x′≤x

∑
y′≤y

i(x′, y′). (3.19)

where ii(x, y) is the integral image and i(x, y) is the original image. The integral image can be
quickly computed in one pass using the following recurrences

s(x, y) = s(x, y − 1) + i(x, y) (3.20)
ii(x, y) = ii(x− 1, y) + s(x, y), (3.21)

14



Figure 3.5: The advantage of using integral images is that it takes only 3 additions to calculate
the sum of intensities inside any area [2].

where s(x, y) is the cumulative row sum, s(x,−1) = 0 and ii(−1, y) = 0. Once the integral image
is computed, it takes only 3 additions (as shown in Figure 3.5) to compute a sum of intensities of
any rectangular area. Also the computational time of normal convolutions grows with filter size.
This is not the case for integral images where the time remains constant, which is very helpful
for SURF as it uses large filter sizes.

3.3.2 Hessian matrix-based interest points

Similar to SIFT, SURF also detects blob-like structures by maximizing the determinant of a
Hessian matrix (see Equation 3.13). Using a discretized and cropped Laplacian of Gaussian for
smoothing has a negative impact on repeatability under image rotations around odd multiples
of π

2 due to the square shape of the filter. But because the detector still performs reasonably
well, SURF goes a step further with approximating the second order derivatives of a Gaussian
with box filters (Figure 3.6). By using integral images, the computational time of these is very
quick and is independent on the filter size.

The filter sizes of 9x9 in Figure 3.6 approximate the Gaussian with σ = 1.2. If we denote
them Dxx, Dxy and Dyy we can find the blob response in image at location x by calculating the
determinant similarly to SIFT:

det(Happrox) = DxxDyy − (wDxy)
2 (3.22)

where the weight w is needed for conservation of energy between Gaussian kernels and their
approximations. For this scale the weight is [3]

w =
|Lxy(1.2)|F |Dyy(9)|F
|Lyy(1.2)|F |Dxy(9)|F

u 0.9. (3.23)

3.3.3 Scale-space representation

Unlike Lowe [21], who implemented scale-space as an image pyramid of repeatedly smoothed
images, then subtracting two adjacent layers and finally downsampling the new image, the SURF
can apply box filters directly at any scale. As shown in Figure 3.7, the use of integral images
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Figure 3.6: [3] The discretized and cropped Gaussian second order derivative in y- and xy-
direction used in SIFT (two images on the left). Box filters further approximating those
derivatives (two images on the right).

Figure 3.7: A pyramid of iteratively smoothing and downampling image used in SIFT (on the
left) in contrast to using integral images for scaling the filter size at constant cost [3].

allows for constant speed of upscaling the box filter. The basic filter size of 9x9 is considered an
initial scale s = 1.2 and the following scales are obtained by gradually using bigger masks.

In order to cover the full scales, scale-space is divided into several octaves. Each octave
represents a series of filter response maps obtained by convolving the original image with a filter
of increasing size [2]. The first filter is the above mentioned 9x9 filter. If l0 is the length of each
negative or positive lobe of the filter, then for the first scale level is l0 = 3. To obtain a new
level, each lobe has to be expanded by a minimum of 2 pixels (Figure 3.8a).This leads to a total
increase of the filter size by 6 pixels for each new level in the first filter, thus also creating filters
15x15, 21x21 and 27x27. Because of the 3D non-maximum suppression explained in Section 3.2,
the first and the last Hessian response maps cannot contain such maxima (they are only used
for comparison). This is why the filter size is more than just doubled.

For each new octave the filter size difference is doubled (12 pixels are added in the second
octave and 24 in the third) and it starts on the second smallest value of the previous octave. In
particular, the filter sizes for the second octave are 15x15, 27x27, 38x38 and 51x51 and for the
third 27x27, 51x51, 75x75 and 99x99 as can be seen in Figure 3.8b. A possible fourth and fifth
octave can also be computed in the same way, but it has been shown by Bay et al. that number
of interest points per octave decays quickly [3].

The Frobenius norm in Equation 3.23 remains constant for all scales ensuring that no further
normalization is needed for the scales, neither is further weighting of the filter response.
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(a)

(b)

Figure 3.8: (a) Scaling of Dyy and Dxy filters from 9x9 to 15x15. (b) Representation of filter
side lengths for 3 octaves. The logarithmic horizontal axis represents scales [3].

3.3.4 Interest point description and matching

The SIFT descriptor used the gradient information of a 16x16 area to create a 128D vector per
each interest point. SURF descriptor, on the other hand, builds on the distribution of first order
Haar wavelet responses in x and y direction and only uses 64D. This again in combination with
integral images and introduction of the sign of Laplacian is not only several times faster than
SIFT, but also has increased robustness. Thus the name Speeded-Up Robust Features [3].

The first step in description is orientation assignment to achieve orientation invariance.
Circular area of radius 6s around each interest point is selected (s being the corresponding
scale in which the interest point was detected). A sum of Haar wavelet responses is calculated
inside each of these subregions. The Haar wavelet is shown in Figure 3.9b. The responses,
weighted with a Gaussian of scale 2s, are plotted in Figure 3.9a. The dominant orientation is
estimated by computing sum of responses within a sliding orientation window of size π

3 . This
exact value was selected experimentally in [3] and is one of the reasons why SURF is patented.
Then sums of responses in x and y direction are computed with the longest one determining the
interest point orientation.

To extract the features, a square area with length 20s is laid over the interest point and divided
into 4x4 squared subregions and oriented along the selected orientation from previous step. For
each of the subregions, Haar wavelet responses are computed at 5x5 evenly spaced sample points.
These responses are then summed in x and y direction (denoted as dx and dy) and also take into
account their polarity, the sum of absolute values is computed in both directions. The resulting 4
dimensional feature vector for each subregion is v = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|). Concatenating

this vector for all 4x4 regions, SURF produces a 64D feature vector. This is half the size of SIFT
feature vector, hence the faster speed and higher robustness. In addition, wavelet responses
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(a)

(b)

Figure 3.9: [3] The dominant orientation of SURF is selected by sliding a window of π2 size and
summing Gaussian weighted wavelet responses at each sample point in a circular neighborhood
of the interest point (Figure a). Haar wavelet filters to compute responses in x and y direction.
Dark area has a value of -1 and the light +1 (Figure b).

are invariant to a bias in illumination and also after normalizing the vector v to a unit vector,
invariance to contrast is achieved. Also SURF features tend to be more robust to noise as can
be seen in Figure 3.11a, where the gradients orientations as described by SIFT are affected while
wavelet responses remain the same.

After finding feature vectors describing each interest point of the image, they have to be
matched to an image from the training set. Here comes another advantage of SURF over SIFT
and that is the inclusion of the sign of Laplacian, which is already computed from the previous
steps. This helps to distinguish bright blobs on a dark background from dark blobs on light
background (see Figure 3.11b). This simple information allows for faster matching, without
any negative impact of the descriptor performance. Otherwise it uses the same technique for
matching as SIFT does.

3.4 Overview of other methods

In this section we briefly sum up several other image recognition techniques that were developed
after the introduction of SIFT and SURF, mostly in early 2010s. The boom in their development
has recently been cooled down by the increased popularity of neural networks, which tend to be
faster and are having much higher precision and variability of use. The methods presented here,
were all correctly mathematically explained. Each of them has its benefits but we have chosen to
be only using SURF for their overall performance and because they were already implemented
in Matlab.

Maximally Stable Extremal Regions (MSER), introduced in 2002 by Matas et al. [25]
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Figure 3.10: [3] To build a SURF descriptor, an oriented grid of 4x4 subregions is laid over the
interest point. From each of the 4 subregions, Haar wavelet responses are computed for 5x5
evenly distanced sample points (only 2x2 are displayed in the figure). These responses, relative
to the grid, are then for each subregion summed in x and y directions, as well as the sum of their
absolute values. This complete 64D vector fully describes each interest point.

(a)
(b)

Figure 3.11: [3] More global SURF descriptor is with wavelet responses more robust to small
changes and to noise than a more locally operating SIFT descriptor (a). The importance of the
sign of Laplacian is that it can differentiate between the same blob-like structures that only differ
by the contrast (light blob on a dark background versus dark blob on light background) (b).
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is a detector of local features that reaches high affine invariance by analysis the component tree.
Those are based on intensity functions and display local extrema. The idea is to find areas which
stay nearly the same through a wide range of thresholds. By creating a sequence of thresholded
images, connected components can be extracted (extremal regions). Then a threshold is found
in which the extremal region is "Maximally Stable". Found regions descriptors are then kept as
features.

The advantage of MSER is its high repeatability and that not only it is invariant to affine
transformations, but also to skewing and warping. The disadvantage however is that they are
extremely sensitive to daylight effects such as shadows.

Features from accelerated segment test (FAST) [28] was supposed to provide a real-
time frame-rate application in 2006. It is a corner detection algorithm and is based on the
property of corners that the change of image intensity should be high in all directions. The
algorithm indeed reaches multiple times the speed of SIFT and SURF, but lacks in robustness
and accuracy.

Binary Robust Independent Elementary Features (BRIEF) [6] introduced in 2010
is a feature point descriptor, which is also focusing on real-time use. Unlike SIFT and SURF
that need 128D and 64D feature vectors respectively, BRIEF uses only binary strings of lower
dimensions for efficient feature point description. It also uses Hamming distance instead of L2
norm for even more efficiency.

Oriented FAST and rotated BRIEF (ORB), introduced in 2011 [29], aims to speed up
SIFT by as much as two orders of magnitude, while also being less effected by noise. It builds
on FAST keypoint detector and BRIEF descriptor, which both have low computational cost. Its
advantage also is that it is free from licensing restrictions of SIFT and SURF.

Binary Robust Invariant Scalable Keypoints (BRISK) [18] is also supposed to have
better performance than SURF with better accuracy. It also builds on FAST, in particular on its
extension - AGAST (Adaptive and Generic corner detection based on the Accelerated Segment
Test), in scale spaces to locate potential interest points.
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Chapter 4

Building a database

This chapter discusses how a database of labeled images of Octavia models was created. The
SURF features (Section 3.3) were used to detect the presence of a car engine space and its
location (see Section 4.1). Using a training set of images of both Karoq and Octavia models,
we were able to accurately locate each car passing on the line. The trade-off between algorithm
speed and accuracy is discussed in Section 4.2. Using only one image was significantly faster but
resulted in poor accuracy. Although a 7-image training set was still almost 1.5 times faster than
the full training set of 15 images and the accuracy was only about 6% lower, there were problems
at extreme cases when there was a person passing by or when two cars were parked too close to
each other. That is why the final training set comprised of 15 images of Karoqs and Octavias
from different angles.

By using SURF features with that full training set, a vector of car names was created for
each video. In order to obtain only one image per each car, it was necessary to identify each
unique car passing on the line. This was achieved with morphological opening on the car names
vector to remove false positives as well as gaps. Each cluster then represented a single car (see
Section 4.3).

Once each car was identified in the video, the presence of a cooling liquid tank was examined
on images with optimal car position (Section 4.4). Using the hue layer of an image converted
to HSV space, the purple color of the liquid could be found using an appropriate thresholding.
To eliminate small purple areas (purple hue is also present in deep black) another morphological
opening with sufficiently large structural element was used. Then a restriction to a specific area
in the picture in combination with the knowledge of the car exact location ensured, that only
the cooling liquid was detected.

In the final stage of building a database of images of Octavia models we needed to select
only one picture of each car on which the cooling liquid tank was also visible (Section 4.5). We
tested two approaches - one being more universal and faster, the other being more precise. The
first technique searched for any frame of the car, on which the liquid tank was visible and then
selected the potential best image. This resulted in a database of cars at a different position,
relative to the camera. The latter technique only looked for images of a cooling liquid tank in
an exact position for each car. The fact that workers were usually passing through the field of
view of the camera A and thus blocking the tank meant, that more videos had to be examined
in order to create a database of at least 2000 cars.
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4.1 Engine space detection

The method of Speeded-Up Robust Features (SURF), which was discussed in Section 3.3, was
suitable for the detection of engine space for both its speed and for its partial affine invariance.
Another strong reason for choosing local features detector in general is that they can perform
well even under a partial occlusion. This was important for reliable detection as the workers
were regularly passing by or standing in front of the camera. We have observed that SURF can
detect the engine space even if one person obstructs the view.

The simplified Algorithm 1 takes one frame of the video, converts it to grayscale and finds
feature points and their description. Then it is compared to the training set of several cropped
images of car engine space and finds the one with highest number of matched interest points.
Finally, a transformation of the training image is computed and the car type, transformed polygon
and its centroid are stored.

We have experimented with various crops of the training images before settling on the whole
crop of the engine space, as can be seen in Figure 4.1a. The figure also shows 50 strongest SURF
features and their scales. We first experimented with only using crop images of the front grill
as it should be unique for Karoqs and Octavias. However, there were several issues. Firstly, it
is only a small area with very limited number of potential interest points (as can be seen on
the figure, none of the 50 strongest points was actually detected on the grill) and it often got
confused with either the black conveyor or the led lamps on the sides (Figure 4.1b). Then it
couldn’t correctly differentiate between the two models and lastly, it was ofttimes blocked by the
car in front or by a person standing in front of the car. We also tried other smaller crops of either
the engine or directly the cooling liquid tank, but again the results were poor. That is why we
opted for the crop of full engine space. How many images were needed for a stable detection is
described in the following section. With this we were also able to distinguish not only between
models, but also between RS, Scout or the standard version. This might be useful in future but
not for purposes of this work.

Algorithm 1 findFeatureVideo
I ← convert frame to grayscale
scenePoints← detect SURF features in I
for all i in length of training_set do

box_pairs[i]← match features of scene_points to training_image_features[i]
points_count[i]← number of matched points

end for
car ← find the training image with highest number of matched points
box_polygon← rectangle of the same size as the training image with best match
if number of matched points < 5 then

discard putative match
else

new_box_polygon← estimate geometric transform of training image to image I
centroid← find the centroid of the new_box_polygon

end if
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(a) (b)

Figure 4.1: 50 strongest SURF points on a training cropped image of engine space (a) and on a
whole car (b).

Figure 4.2: Matched SURF points on Octavia.
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Full training set 1 image 2 images 4 images 7 images

Sum of cluster sizes 243 137 151 165 208
Ratio of exact matches 94% 73% 82% 83% 88%
Elapsed time 1 39.4% 54.5% 58.9% 68.3%

Table 4.1: Comparison of efficiency of different training set sizes. Sum of cluster sizes states how
many of frames in a 600 frame video belonged to a cluster. Ratio of exact matches is how many
detected cars were inside any cluster in the full training set attempt. Elapsed time compares
time of the function run on a smaller and the full training set.

4.2 Choosing an optimal training set

While the size of the training set has a direct impact on the accuracy of SURF descriptors and
can lead to better distinguishing between car models as well as reducing false positives, it also
has a negative impact on speed. Function matchFeatures has to run through all images from
the training set before choosing the best match, hence the larger the training set, the slower the
function runs. We iterated the size of the training set and observed how well it performed in
detecting each in video.

The results are shown in Table 4.1. We tested the full training set against 4 smaller subsets.
The full set was comprised of 5 images of Karoq and 10 images of Octavia engine space. Those
were selected to cover most of the variability in real traffic such as different position of the car
to the camera (further away as well as just under it) or different model variations such as RS or
Scout.

The first subset contained only one image of Octavia engine space. While in the full training
set the sum of cluster sizes was 243 of 600 frames, it was only 137 frames for the one image
training set. Also the percentage of instances when the function found an exact match with the
vector of clustered data is significantly lower for the smaller training dataset. This was mainly
due to the fact that it could not differentiate between Octavia and Karoq, which were passing
the assembly line. However, the elapsed time was shorter by more than 60%. The accuracy
results slightly improved when an image of Karoq engine space was introduced in training set 2.
Introducing two more images of different engine covers of Octavia resulted in another incremental
improvement while also increasing the time needed to run the function to almost 59% compared
to the full set. In the last subset, one additional image of Karoq and two of Octavia were included
to improve the ratio of exact matches to 88% and the sum of cluster sizes to 208 frames. The 35
missing frames were mostly associated with Karoq which for our purposes would not be of harm.
Also we noticed that different plastic engine covers do not play a key role for SURF descriptors
and their performance.

However, there was a different issue that emerged. In some instances when two cars were
placed just behind each other, the trunk door was open on the first car and workers were standing
in between, the car behind would only be visible for as little as 7 or 8 frames. Then it was only
the full training set that identified the second car as a standalone cluster. This can be seen in
Figure 4.3a and 4.3b.

24



(a) (b)

Figure 4.3: Even when two cars were parked closely behind and the second car was covered by
the trunk door of the first car, the algorithm utilizing the full training set was able to detect the
car behind as a new car.

4.3 Car separation

To create the database of Octavia images, we first needed to be able to differentiate each next
car on the line. This means that we do not only want to tell where the car is and whether it
is an Octavia or Karoq, but also when a particular car enters the view and when it exits. This
was part of a long script SURFANDHSV that we break down step by step in this and the following
sections.

In this algorithm, we first go through the whole video from camera B and on each frame
apply function findFeatureVideo (Algorithm 1) to determine if there is a match to any of the
training images. We then store the car model name to a vector. As each video was 10 minutes
long with a frame rate 1 fps, the vector (and all the following vectors for the whole video) has
600 rows, with each row being either empty or containing either Octavia or Karoq. For each
found car we also store the coordinates of transformed bounding polygon of the engine space. It
was needed later for narrowing the region for searching the cooling liquid.

To locate each Octavia only, we replaced the rows with Karoq name with zero. Then we
could make the vector binary, 1 for Octavia and 0 for no match. This vector now contained
clusters of ones, marking the frames on which Octavia car was present. However, the clusters
were not compact - false negatives could be caused by a passing worker obstructing the view or
sometimes the SURF mistook Octavia for Karoq. There were also several false positives in every
video (almost always single frames). To distinguish between individual clusters, we decided to
use simple technique of morphological opening for smoothing the vector. THe structural element
size was chosen experimentally. This operation removed false positives and smoothed small gaps.
We could then separate each cluster and assign it the corresponding car name and a number in
a sequential order.

Although it was not in the scope of this work, we tried to correctly label not only Octavias,
but also its specific versions like RS or Scout and the same for Karoq. For this we modified the
Algorithm 1 to store the whole name of the matched training image. Then for each cluster we
simply used the majority vote to determine the most common name. It could well differentiate
between Octavia and Karoq, but had flaws in detecting the particular version. This could
probably be fixed by enlarging the training dataset to more than 15 images, but that would
again raise the computational time. Because we did not need it for achieving our goal, we did
not examine it any further.
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We also experimented with different and more sophisticated methods for identifying each car
on the line. Namely we tried to interpret the movement of the centroid of engine space as found
by findFeatureVideo. The idea was to assume a new car, when the centroid is found at the
top half of the frame and is exiting the view when it was in the bottom area. We also tried
to use linear regression on the centroid locations and match it with the constant speed of the
conveyor. The main goal of the former mentioned was to be able to make it more robust to
sudden stops of the production line (apart from the usual meal breaks), when one car is detected
standing several minutes on the same place. But it turned out that since the cars were often
parked closely behind each other, the entering and exiting areas were overlapping and we could
not specify the threshold. The before mentioned simple approach with morphological opening
proved to be most effective and practically flawless - when manually inspecting the database we
never encountered two images of the same car.

4.4 Cooling liquid tank detection

Using SURF on detecting the cooling liquid tank yielded poor results as the cropped area is very
small and in low resolution. Instead, we exploited the fact that the cooling liquid in Octavia has
a strongly distinguishable purple color. Using the HSV space (Hue, Saturation, Value) we were
able to threshold the hues and separate purple areas from the rest of the image. We wrote two
algorithms for detecting the liquid from both camera A and camera B, which differ only in the
parameter of polygon used for narrowing the searched area.

The function HSVTOP described in Algorithm 2 has an input of the image and the transformed
polygon area. The image is first converted to HSV space and thresholded. Because the liquid
always covers a larger area than most other remaining from the thresholding, morphological
opening is used on the binary image to remove smaller structures. The algorithm then examines
only the area restricted by the transformed polygon obtained from function findFeatureVideo
and if there is more than one area with a surface of more than 400 pixels (this value was
experimentally selected as optimal), then a morphological opening is applied once again but
with larger structural element. This is repeated until only one area inside the polygon remains
and then the coordinates of its centroid and of the bounding rectangle are stored. If no purple
area satisfies the conditions, zero is returned as no cooling liquid has been detected inside the
specified region.

It is important to scale down the observed area as much as possible, because the purple
hue can be also present in other areas. We noticed, that large purple objects, that are not
removed with morphological opening, occurred either when an employee was wearing a purple
shirt (although standard white and green are mandatory) or sometimes in the bottom side of a
car bonnet, because purple hue is also present in deep black.

The steps of this function for the side view can also be seen in Figure 4.4. Because we only
computed SURF features for each frame of a camera B video, we did not know directly the
location of the engine space in camera A video, although they are connected as the frames are
taken in the same time. Hence, for the function HSVSIDE we only used empirical coordinates
of restriction for the detection of the liquid. This however caused us problem twice, when the
camera A was hit by a worker and tilted to a different direction. We needed to adjust the script
manually for proper detection.
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Algorithm 2 HSVTOP
Convert image I to HSV space
Ih← Threshold hues between 0.85 and 0.95
I_open← opening of image Ih with structural element se
if largest compact area in Iopen is > 400 then

object_in← purple areas within box_polygon
while number of elements in object_in > 1 do

Increase the structural element size
I_new ← opening with new structural element
object_in← remaining compact areas

end while
liquid_centroid← centroid of the one remaining compact area of object_in
bounding_rectangle← rectangle surrounding the detected purple area

else
No cooling liquid was detected in a given frame

end if

(a) RGB image (b) Image thresholded in HSV

(c) Image after the first opening process (d) Final detected liquid.

Figure 4.4: Cooling liquid detection process: (a) RGB image is converted to HSV space and
thresholded (b). Morphological opening is applied to the binary image (c) and then repeated, if
necessary, until only one object remains (d).

27



4.5 Database of representative images

After the previous steps - using SURF for finding engine space, clustering vector of car names to
distinguish every individual car and locating the cooling liquid in HSV space - we knew where
each car was in the video in any given moment. Then we needed to extract one image per
each car passing on the line. Cooling liquid had to be in a desired location and could not be
hidden behind any obstruction. Our first approach was to collect images from both cameras with
highest possible efficiency. This meant that if the presence of cooling liquid was not observed
in an optimal location, more frames were examined until it was detected or the car went out
of frame. Although the algorithm produced slightly more than 90% of car images from both
cameras in a full day of recording (if the liquid could not be located in either of the two images,
the second was discarded as well), the position of cars in the frame varied significantly. Still this
result was higher than we expected given that all videos were recorded during normal working
hours and in an environment that was not adjusted for our needs.

The second approach was more specific as we wanted to produce a database of images from
the side view only, but with the cooling liquid being always in the same position (with slight
variance), so that we would be able to train a convolutional neural network with them. For
this we again used SURF features of the engine space from the top view and clustered each
car. However, this time we detected the cooling liquid directly on the side view, only on the
frames on which the car should was present at the moment and in only a small rectangle area of
approximately 150x120 pixels. This window was again chosen empirically as it had to be small
enough to keep each car on every image at roughly the same position, but in the same time had
to account for different placement of the car on the conveyor as they were manually parked by
employees. Thus, usually only half of Octavias could be exported from every video.

The final script Database described in Algorithm 4 was written so that it could go through
all video files and run until every video was not examined. First the training set of 15 cropped
images and their SURF features was loaded to memory. Then in a loop over every subfolder
(named by days) a video paths from both camera A and camera B was loaded and passed to
a script VIDEOCONV described in Algorithm 3. This script converted both files from h265 codec
at 4:2:2 to h264 in 4:2:0 which can be read by Matlab. The video from camera A was also
flipped vertically, as it was mounted upside down. A path to these two converted videos was
then passed together with the training set to the function SURFANDHSV, which we described in
the last 4 sections. It saved side images of Octavia models with the cooling liquid tank being
well visible and in the same position and for each car also wrote, apart from the car number
and its source video also the coordinates of the centroid of the localized liquid area as well as its
bounding rectangle.

On our 6 core (12 thread) 3. gen Ryzen processor, it took about 3 days to produce a database
of 2000 images. The most computational time consuming part was finding SURF features in every
frame of the video and matching it to the training set of 15 images. As we discussed in Section
4.2, we could have used less images but at a cost of mismatching some frames which could lead
to either not detecting the car at all or interpreting one car as two different. We also had to twice
manually edit the script when a worker hit the camera and changed it’s orientation. Although we
tried to write the script as robust as possible, because of speed we only computed SURF features
on top view images from camera B, and then only empirically defined the area in which the
liquid should be detected in the side view. This could either be corrected with a better hardware
- a strong mounting of a proper industrial camera instead of a web cam - or with rewriting the
algorithm so that it would also compute SURF features on the side view and compared it to
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another training set (of side view images) for at least those frames, on which we want to detect
the cooling liquid.

However, it was important for us to show, that we can use SURF to create (in combination
with thresholding in HSV space) a large database of images, which then could be used to train
and test a convolutional neural network (Chapter 6). In the following chapter, we discuss how
to read the level of the cooling liquid from a prepared cropped image.

Algorithm 3 VIDEOCONV
Require: VideoA, VideoB and the folder path

if Converted fileA doesn’t exist then
command← convert to h264 at 4:2:0 and crf18
execute command

end if
if Converted fileB doesn’t exist then

command← convert to h264 at 4:2:0 and crf18 and rotate 180
execute command

end if

Algorithm 4 Database
training_set← TRAINSETLOAD
for all i in subfolders do

nameA← all videos ending with A.mp4
nameB ← all videos ending with B.mp4
if ffmpeg.exe doesn’t exist then

copy file to the folder
end if
for all i in length(nameA) do

vidA← i-th camera A video
vidB ← i-th camera B video
[fileA, fileB]← VIDEOCONV(vidA, vidB)
car_data← SURFANDHSV(training_set, fileA, fileB)

end for
end for
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Chapter 5

Cooling liquid level detection

In previous sections, we have described the whole process from collecting video on site to creating
a database of car images with a known location of the cooling liquid. In this section we introduce
our method for the final step - detecting the level of cooling liquid and determining, if the amount
of liquid is sufficient or not.

For this we decided to use Method A proposed by A. Novozamsky et al. [26]. In their
paper, they needed to detect bleeding in wireless capsule endoscopy videos. Instead of any shape
detection of the blobs, they opted for separating the blood color from the rest of the video. This
is similar to our cooling liquid detection, as we also need to separate a distinctive red-purple color
from the surroundings. Their method was based on creating their own color space (modifying
RGB space) so that it would provide more discriminability for red color in specific. In its basis
is similar to CMYK color model, which is also subtractive. Their algorithm can be summarized
as follows [26]:

1.

K = min(1−R, 1−G, 1−B), (5.1)
M = (1−G−K) (5.2)

where R,G and B ∈ 〈0, 255〉. The pixels with a low value in green and high values in red
and blue are well separated.

2.

R1 =
√
G2 +B2,

Rn =


0, if R1 = 0 ∧R < 128,

255, if R1 = 0 ∧R ≤ 128,

R/R!, if R1 6= 0.

Their classification criterion is then decided by counting the number of pixels which product of
Rn ·M exceeds 200. We have drawn on the first step, the subtraction, but we modified R1 as a
row sum of values in M .

In practice, a narrow cutout has been taken around the centroid of cooling liquid as described
in the previous chapter. The lower part was 10 pixels beneath the centroid, the upper 60 pixels
above and 5 pixels were counted to each side. The bounding rectangle of the detected liquid is
in Figure 5.1a and the narrow cutout for the corresponding image of the liquid tank in Figure
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(a) Detected liquid on Octavia (b) A narrow cutout area
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Figure 5.1: A location of cooling liquid in an image is known from a function HSVSIDE (a). A
narrow cutout of 6x130 pixels (b) is converted to a new color space and normalized. Then a sum
over each row is computed and the resulting intensities plotted (c).

5.1b. The intensity values for this cutout were first normalized and then their channels were
subtracted as described in Equations 5.1 and 5.2. Then the row sums of M were computed and
the values plotted in 5.1c. We have observed, that two major peaks always occur. The first
corresponds to the purple hues contained in the blacks of the liquid tank cover and the second
peak to the liquid itself.

The level of the cooling liquid can be then calculated simply as a ratio of the width of first
peak to the distance from its bottom part to the bottom part of the cover (beginning of the
second peak). To isolate the two peaks from surrounding values, we heuristically found a proper
threshold.
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Chapter 6

Convolutional neural networks

All previous chapters describe the complete (and working) process of detecting the level of cooling
liquid with the use of SURF for analyzing the video and selecting only a few frames, where the
liquid is visible. This process is due to the nature of SURF and due to our design (described in
Section 4.2) considerably slow. Thus we have decided to use neural networks for the real time
application and only take advantage of the SURF method for providing it with a labeled set of
training images.

In this chapter we first briefly discuss the history and necessary theoretical background for
understanding convolutional neural networks (Section 6.1). Then, in Section 6.2, we describe U-
net (introduced in 2015 [27]) and our own segmentation neural network built on it ([39] 2019, Z.
Bílková). This network was first developed for text segmentation, but retraining it on car images
yielded satisfying results. After using 1000 labeled images for training, the neural network was
able to correctly detect the cooling liquid tank on all 1000 testing with at least 90% overlap with
area detected with SURF algorithm. The implementation is further described in Section 6.3. In
conclusion, we demonstrate how our network can operate much faster, analyzing a video shot at
1 fps at the speed of 50 fps, estimating the level of cooling liquid and graphically visualizing it.

6.1 Convolutional neural networks

Standard feedforward neural networks consist of input layer, neurons in one or more hidden layers,
connections with weights and an activation function. In a fully connected neural networks, each
neuron is connected to all neurons in the previous and the following layer. The process of training
a neural network starts by a random initiation of weights and biases. Then, using an activation
function, forward propagation is computed and its result is evaluated using a cost function. This
is then used for backpropagation with a manually chosen learning rate and each weight is then
changed. The goal is to minimize the cost function, which compares results with the training set
(in supervised learning). This process is well known for several decades and has been thoroughly
described in many books and articles ([4], [24], [30] or [14]).

However, these standard neural networks are not suitable for deep learning with more layers.
In fact, even only 10 hidden layers can yield worse results than a smaller network, while also
training much slower. Deeper networks have a large impact especially in natural language
processing and visual imagery, as they can describe more complex features. That is where
Convolutional neural networks (CNN) come into play. The first use of backpropagation learning
the convolution kernel coefficients was in 1989, when LeCun et al. used it on hand-written
numbers ([15]). This was later expanded to LeNet-5 [16], a first convolutional neural network.
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Figure 6.1: [13] The architecture of AlexNet has two different "streams", because it was trained
on two parallel GPUs.

It was used by various banks to recognize hand-written digits on checks. However, CNNs gained
popularity several years later, when they could be trained using GPU instead of CPU. In 2011
CNNs outperformed other methods on the MNIST handwritten digits benchmark and were
winning machine learning competitions [32]. A. Krizhevsky et al. mentioned in [13], that
compared to standard feedforward neural networks with similarly-sized layers, CNNs have much
fewer connections and parameters and thus can be trained much faster, while their theoretical
performance should be only slightly worse. Their CNN, AlexNet, is shown on Figure 6.1.

Convolutional neural networks exploit the fact, that neighboring pixels in images usually are
not independent. While in fully a connected layer, each neuron is calculated using all input pixels
by adding weight to each of them, and the same is repeated for every other pixel, CNNs observe
interactions between neighboring pixels and typically only share 3x3 weights (size of the kernel).
Each convolution layer convolves the input with a kernel and passes its result to the next layer.
The third dimension of this layer comprises of extracted features from the convolution. Typically,
the features from the first layer of CNN is similar to human visual cortex which recognizes Gabor
functions. The padding scheme of convolution can either be same (extending the original layer
to preserve dimensions) or valid. As can be seen in Figure 6.1, the two spatial dimensions of
hidden layers decrease. This is because of operation called pooling. While convolution combines
values around a single pixel, it is also useful to combine smaller areas into larger ones. Two most
common fixed pooling operation are average pooling, which takes the average of values in a cluster
of neurons in prior layer, and max pooling, which only takes the maximum value. In ImageNet,
max pooling is used three times. The combination of convolution, non-linear activation and
pooling can find various features on various levels, e.g. from circles and corners to more complex
features like letters. Because these features also need more information to describe them, the
depth of the layer (the number of channels) increases with each pooling operation. For example,
a 224x224 RGB image becomes after 3 layers a 13x13x196 representation.

The two penultimate hidden layers in Figure 6.1 are fully connected layers of 2048 neurons
and the last layer of 1000 neurons corresponds to the number of classes that the network classifies
into. Two popular networks introduced in 2014 were VGG [33] and Inception (GoogLeNet) [34].
Drawing on the VGG, ResNet ([12] 2015) introduced adding residual connections which copies
the input to the output with a weight. This allows for much deeper networks to perform well
and improves their performance.

The activation for all output pixels is defined using the same set of weights. This means that
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Figure 6.2: [27] U-net architecture with multi-channel feature maps illustrated with blue boxes
and copied feature maps with white boxes. The arrows represent a corresponding operation.

the activation in a pixel does not depend on its position, which is useful for position invariance,
but reduces localization of each feature. To extend image classification to image recognition, Fast
R-CNN [10] was introduced in 2015. It uses Regions of Interest (RoI), which are each pooled
into a fixed-size feature map and then mapped to a feature vector by fully connected layers.
Those branch into two sibling layers: one produces softmax probabilities and the latter per-class
bounding box regression offsets. For our purposes we decided to use a different approach of CNN:
U-Net segmentation network.

6.2 U-net and our CNN

U-Net, presented in 2015 by O. Ronneberger et al. [27], builds on the so-called "fully convolutional
network" architecture. It is similar to other CNNs in the contracting step, but instead of ending it
with several fully connected layers, it starts an expansion process until the output segmentation
map reaches the level of the input image (with cropped resolution). Also in the upsampling
part, there is a large number of feature channels, which allow the network to propagate context
information to higher resolution layers.

The architecture is illustrated in Figure 6.2. A valid part is taken from each 3x3 convolution,
to predict pixels in the border region of the image, the missing context is extrapolated by
mirroring the input image. Repeated convolution is followed by rectified linear unit (ReLu)
activation and a 2x2 max pooling. The expansion path on the other hand, starts with upsampling
the feature map and then with 2x2 "up-convolution", which halves the number of feature
channels. Then comes the important part of copying the activations to the output path and
concatenating them together. Furthermore, two 3x3 convolutions are followed by a ReLu.
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Overlay type overlap > 80% overlap > 90% overlap > 95% overlap > 99%

CNN 100 99.65 97.79 60.53
CNN + HSV 100 100 99.82 98.32

Table 6.1: Using overlay with CNN and HSV knowledge significantly improves the performance
of segmenting the cooling liquid tank.

Because of the loss of border pixels in every convolution, cropping is necessary. In the end,
a 1x1 convolution is used to map each 64-component feature vector to the desired number of
classes. In total, the network has 23 convolution layers. [27]

Our U-net network was built by Z. Bílková [39] on TensorFlow architecture and retrained by
us on our car images. The labeled segment on the input was a cut out around the liquid centroid,
as found using HSV thresholding and morphological opening. 10 pixels were counted down from
the centroid, 60 pixels up and 50 pixels to each side. Our CNN tried to correctly locate this area,
so that it could be passed to liquid level detection process described in Chapter 5. To measure
performance of our CNN we computed the overlay of the input area (from the SURF algorithm)
with the one that the network found.

6.3 Faster liquid detection

All CNNs mentioned in previous sections and most modern supervised learning segmentation
CNNs require a labeled dataset, upon which the network can be trained. Our goal was to use
SURF and HSV space for automatic labeling of the dataset, so that we would not have to do it
manually over every picture, but instead only verify the results. We were able to generate more
than 2100 pictures (from the side) of individual cars in approximately the same position with
respect to the camera (as described in Section 4.5). Because of the time needed for creating
such a database, we trained our network on the first 1000 images (90% for training and 10% for
testing) and leaved the remaining 1150 for validation.

We first tried only using CNN for the detection and it shown good results with more than
99.6% of images having an overlap of more than 90%. The other quantiles and a histogram can
be seen in Table 6.1 and in Figure 6.3a. When we also used HSV liquid detection in our CNN,
the results were even more impressive with all of 1150 images having an overlap higher than 90%
and more than 98% of them overlapped on more than 99%. We also saw a significant reduction
of false positives, as we increased our training dataset. When we started only on 80 training
images, it often flagged parts of engine space or even the side panels as a region of interest. These
all disappeared as we enlarged the dataset.

Our final result is a video with found cooling liquid tank masks and a graphical representation
of the level of cooling liquid. We show 4 images from this video in Figure 6.5. It can be seen
that the network correctly ignored Karoq models and also coped with a partially covered liquid
tank by a passing worker. The level of cooling liquid is illustrated with a white bar on the right
side of frame. Because we did not have any data about which cars had an insufficient amount
of the cooling liquid, the threshold for flagging potential defective cars should be consulted from
the part of the car-making company. Our scripts can be modified to run in real time and assist
the employees with indicating on cars, that need to have their cooling liquid refilled.
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Figure 6.3: Histogram of the overlap CNN and SURF with respect to CNN (on the left). When
HSV prior was added to the training, 98.3% of found liquid cutouts had an overlap of more than
99% (on the right).
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(a)

(b) Overlap of CNN with SURF (c) SURF and HSV detection

Figure 6.4: For each image from the validation set (a) an overlay of CNN detected bounding
area of cooling liquid tank with bounding area from SURF is displayed in (b). The amount of
overlay is illustrated with the color bar on the right. Cooling liquid area, as detected using HSV
thresholding and opening is shown in (c).
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(a) (b)

(c) (d)

Figure 6.5: 4 representative images taken from the resulting video have the following structure.
(From left to right) original cropped image, cropped image with red overlaying mask surrounding
the liquid tank as found by CNN, narrow black/white bar illustrating the hight of the cooling
liquid. (a) No cooling liquid found on the Karoq as its liquid tank is sunk beneath the edge of
side plate. (b) The level of cooling liquid is well above the half line. (c) Low level of the cooling
liquid. (d) partially covered liquid is still detected by our CNN.
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Chapter 7

Conclusion

In this work we proposed a "Proof-of-concept" solution for automated visual car inspection in
Škoda Auto. We have shown that it is possible to use computer vision to assist employees who
have only limited time to visually inspect assembled vehicle for quality control. We have focused
only on the detection of the level of cooling liquid in Octavia models.

Let us summarize the content of this work. In Chapter 2, we first introduced the project setup
and the environment of Control Block KB8 in which we were expected to develop our system.
Because we could not disrupt normal daily traffic of the factory, we only mounted two Logitech
web cameras, one directly above the conveyor strand and one on the side. Output of these
cameras was lead to a nearby computer to record several weeks of footage. This pilot approach
however brought several problems that we had to overcome later in Chapter 4, for example we
had to remove images of workers obstructing the camera view and correct the shift in position
when the camera was hit three times. We also decided to focus only on Octavia models, as
Karoq model has the cooling liquid tank placed deeper within the engine space, which makes it
invisible from the side view.

In Chapter 3 we gave an overview of methods used in image recognition. Special attention is
paid to methods SIFT and SURF. Scale invariant Feature Transform (SIFT) introduced in 1999
provides a complete feature point detection, description and matching for object recognition in
images by combining scale-space, finding maxima of Laplacian of Gaussian, observing the trace
of Hessian matrix and using gradients directions for keypoint description. Speeded-Up Robust
Features (SURF) introduced in 2008 improves on this method by using integral images for faster
convolution, a different scale-space representation and interest point description based on Haar
wavelet responses. Because of its increased speed and robustness, we opted for using it for car
engine space detection.

This is described in Chapter 4, where we gave a complete overview of how we processed
hundreds of Gigabytes of video and exported only several thousands of labeled images with each
car being represented only once. We discussed benefits of using smaller or larger crop for SURF
detection and why we decided to use a set of 15 cropped images of the whole car engine space
of both Octavias and Karoqs. We used morphological opening on the vector of detected cars to
isolate clusters corresponding to each car passing on the line, because we did not have access
to the company RFID system. With this script we were able to process each 10-minute video
in roughly 7 minutes on our 3. gen Ryzen PC build and read the position of a car in every
moment. Then we have shown, that the color of cooling liquid is separable from background
with a corresponding thresholding in HSV space. Again, with the use of morphological opening
we were able to detect position of the cooling liquid and extract an image of the car, when the
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liquid was in a desired position and was not obstructed by a passing person. With the knowledge
of centroid of the cooling liquid we showed in Chapter 5, that with the use of a special subtractive
color model, we were able to read pixels containing both the liquid and a black cover on the liquid
tank. Then by a simple comparison of the height of the liquid and the distance to the bottom
part of the cover we could read the level of the cooling liquid.

Because the process of detecting local features was notably slow, we experimented with the use
of machine learning for the detection of the liquid tank. In Chapter 6 we gave a short introduction
to the theory of neural networks and discussed the development of convolutional neural networks,
which are especially useful for image segmentation. Because we had a pre-trained network at
our disposal, based on U-net architecture, we trained it on a thousand labeled images and then
used another thousand images for validation. We have shown that the neural network can find
the segment with more than 90% overlap in more than 99.6% of images. When we incorporated
also the HSV space separation of the liquid, it correctly found all images and more than 98% of
them with more than 99% overlap. However, we expect the neural network to have even better
results, because the SURF labeled images used as ground truth might not be exact.

The two main advantages of this approach was first a significant increase in speed (each video
shot at 1 fps could be processed at more than 50 fps) and importantly, we have shown that it
is possible to use feature-based methods, such as SURF, for creating the training database of
labeled images, which replaces the need of manual labeling by a human, which is needed for
every supervised neural network.

However, we did not have any ground truth for the level of the cooling liquid itself, thus our
main result could only be a graphical illustration of the proportion of the liquid in the tank,
not a binary classification of sufficient and insufficient amount of liquid. This would have to be
further developed with the expert knowledge from the company itself.
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