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Název práce:

Porovnání metod pro detekci obličejů bez omezujících podmínek
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Introduction

A large part of human interaction involves face-to-face communication. Face is the first thing that
people notice about one another, it expresses emotions and carries a lot of information about a person
and their state of mind. We use facial features to identify each other on a daily basis.

For these and many other reasons, the detection of faces in an image is a useful tool for computers.
It is a key instrument for other face-related computer tasks, such as recognition, authentication, gender,
age recognition, head pose tracking, face tracking for surveillance, and many others [1]. In addition to
its use in facial analysis tasks, face detectors can be found in most digital cameras providing the auto-
focus feature or in social media networks to tag people in images [2]. However, in face detection, there
are many challenges that the computer must be able to overcome to be successful in this task. These
include variations in pose, facial expressions, lighting conditions, occlusions, etc. [1]. Therefore, many
face detection approaches, as well as face detection datasets, have been developed to train and test these
methods. The early algorithms, although successful under certain conditions, were unable to perform
well in real world settings. Today, many approaches have been developed that are capable of performing
accurately even in more complex environments [2].

This thesis aims to present the theoretical background behind some of the face detection methods
used to detect faces under unconstrained conditions. It includes a chapter on the fundamentals of machine
learning (Chapter 1) and a chapter dedicated to face detection, where detection methods, which are later
used in experiments, are described (Chapter 3). Chapter 2 describes different challenges in detection, as
well as datasets used to train and evaluate detectors under these conditions. The last Chapter 4 focuses
on experiments conducted with the chosen methods on three different datasets and evaluates the results
under different image conditions.
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Chapter 1

Machine Learning

Face detection in digital images is a process used to identify the size and location of the human
face, as well as its features [1]. The input of this process is an image or a video with the output being
the information, whether it contains a face and its location as well as the extent of each of the faces
present [3]. It may also be viewed as a classification problem where the objective is to locate all members
of a certain class. In this case, we deal with a two-class recognition task in which one class represents all
faces and the other one everything else [4].

Machine learning is used for many computer vision tasks, including face detection. This chapter
provides a brief review of machine learning techniques and principles.

Figure 1.1: Various fields of research which are incorporated into machine learning.

As shown in Figure 1.1, machine learning is a discipline that combines various diverse fields of re-
search. It models algorithms based on empirical data, from which it pursues to extract rules and patterns.

8



CHAPTER 1. MACHINE LEARNING 9

The main idea behind these algorithms is that they learn to perform given tasks based on acquired ex-
perience. A formal definition of learning by Tom M. Mitchell (1997) is: "A computer program is said
to learn from experience E with respect to some class of tasks T and performance measure P if its per-
formance at tasks in T, as measured by P, improves with experience E." [5]. Some of the most common
machine learning tasks are classification, regression, feature reduction, anomaly detection or denoising.

Figure 1.2: Main categories of machine learning algorithms based on experience.

The experience represents what kind of data we present the algorithm with, what it experiences [5].
Based on different learning techniques (experiences), machine learning can be divided into three main
subcategories [6] (see Figure 1.2):

• Supervised learning: In this type of learning, examples of labels for input data are given to
the computer. It is expected to associate features based on given knowledge and make decisions
accordingly. Algorithms that experience this kind of data are, for example: linear or logistics
regression, decision trees, naive Bayes classifier.

• Unsupervised learning: These techniques experience data given by features. Since no labels are
provided, training is done by finding similar patterns and grouping the data according to those
patterns. Examples for this category include: k-means clustering, probabilistic clustering, or hier-
archical clustering.

• Reinforcement learning: Algorithms that use reinforcement learning maximize their performance
by receiving feedback (called reinforcement signal). Therefore, they do not experience a fixed
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dataset as the previously mentioned approaches. This technique might be used, for example, in
training neural networks.

Among the standard performance measures, the most frequently used for classification are accuracy,
error rate, precision, specificity, or sensitivity. The choice of measures depends on the given task and the
desired behavior of the algorithm used. One of the most challenging factors in machine learning is the
algorithm’s ability to perform well on previously unobserved input. To obtain a better insight into the
performance, a testing set (which is independent of training data) is used to calculate the performance
measures. A term used for the ability to give satisfactory results on previously unseen data is called
generalization. While training a machine learning algorithm, a training error is calculated from the
training data as well as a generalization (test) error - an error expected on new data. From these values,
we can study the adequacy of the given algorithm by observing its ability to minimize:

• Training errors: The inability to adequately minimize the training error results in underfitting.

• Gap between test and training errors: If the gap becomes too large, overfitting occurs [5].

Examples of these unwanted behaviors of models are depicted in Figure 1.3. The likelihood of overfitting
or underfitting the model can be controlled by its capacity. This property represents the model’s capability
of fitting different functions.

x

y

Underfitting
Model
Samples

x

y

Appropriate capacity
Model
Samples

x

y

Overfitting
Model
Samples

Figure 1.3: Visualisation of model behaviors if insufficient minimization of training errors (underfitting)
or gap between training and test error (overfitting) occurs and a model with appropriate capacity.

The remainder of this chapter is focused on machine learning methods that are common in face
detection applications.

1.1 Support Vector Machine

Support vector machine (SVM) is a machine learning algorithm that uses supervised learning for
classification tasks. It is designed to look for parallel hyperplanes that separate data belonging to different
classes by the maximum possible distance. The resulting decision boundary is also a hyperplane parallel
to these so-called marginal hyperplanes, which lies between them. The name support vector machine is
derived from the term used for training samples that the separating hyperplanes pass through - support
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(a) (b)

Figure 1.4: (a) Hard margin SVM approach to finding decision boundary for two classes and two-
dimensional features where hyperplanes are lines. It shows where the decision boundary support vectors
and maximum margin are located. (b) Soft margin approach which allows the outlier to lie on the wrong
side of the marginal hyperplanes.

vectors [7]. Figure 1.4a depicts all the above-mentioned concepts related to SVM for two classes of
two-dimensional features.

A hyperplane for separating two classes with n-dimensional feature vectors x is defined as:

wx + b = 0 (1.1)

and w is the vector of weights. Two marginal hyperplanes can be represented as:

wx + b = 1, (1.2)

wx + b = −1, (1.3)

satisfying the condition that the hyperplanes separate data: ωi(wxi + b) ≥ 1 where ωi is class identifier
(ωi ∈ {1,−1}). Let us have two feature vectors: x+ lying on the positive plane and x− on the negative
plane closest to x+. Vector x+ − x− is normal to both hyperplanes, hence for any λ:

λw = x+ − x−. (1.4)

Multiplying Equation (1.4) by vector w yields:

λ∥w∥2 = x+w − x−w, (1.5)

λ∥w∥2 = 2, (1.6)

Substituting λ = 2/∥w∥2 (derived from (1.6)) in (1.4) leads to:

x+ − x− =
2
∥w∥
, (1.7)

which is the equation for the margin, we are looking to maximize. This can be achieved by minimizing
∥w∥ with regard to the constraint ωi(wxi + b) ≥ 1. Lagrangian function can be used to accomplish this
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task [8]. This kind of approach to SVM uses hard margin constraint and is suited for linearly separable
classes without outliers. To avoid this drawback, the soft margin constraint is used. A penalty term is
added to the objective function so that the algorithm allows the training samples to lie on the other side of
the hyperplane for a given class (see Figure 1.4b). If classes are not linearly separable classes, a mapping
of the feature space is carried out. This approach to SVM is known as the kernel trick [7].

1.2 Principal Component Analysis

Principal component analysis (PCA) is an unsupervised learning algorithm. It is designed to reduce
the dimensionality of given data while removing their linear correlation. Covariance for m×n matrix rep-
resentation of data X with zero mean (which can be achieved by subtracting the mean from all samples)
is defined as:

Cov[x] =
1

m − 1
XT X. (1.8)

PCA finds a linear orthogonal transform, in this case rotation z = xT W, such that matrix Cov[z] is
diagonal [5].

The basic algorithm for principal component analysis consists of finding the mean vector µ and the
covariance matrix Cov[x] from the original data. Subsequently, the eigenvectors with their correspond-
ing eigenvalues of the covariance matrix are calculated and sorted in decreasing order according to the
eigenvalues. Afterwards, k eigenvectors with the highest eigenvalues are used as new dimensions that
the original m-dimensional space will be transformed into [9]. The number of eigenvectors k can be
determined by the number of dimensions needed for given problem or with the help of a measure called
proportion of explained variance which is calculated from the eigenvalues [10]. Figure 1.5 shows an
example of PCA for 3-dimensional data.

(a) Original data in 3-dimensions.
(b) Scatterplot after using PCA to reduce the dimen-
sionality to 2-dimensions.

Figure 1.5: Visualization of PCA on 3-dimensional dataset [11].

1.3 Adaptive Boosting

Adaptive Boosting or AdaBoost is a supervised learning algorithm used for classification. The idea
behind this approach is to create a classifier by combining several imprecise or weak ones.
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Let us have N training samples (xi, yi)N
i=1 where xi ∈ R

k, k ∈ N and yi ∈ {−1,+1}. The definition of
0 − 1 loss function I for weak classifiers fm(x) ∈ {−1,+1} is given by the equation:

I( fm(x), y) =

0 if fm(xi) = yi
1 if fm(xi) , yi.

(1.9)

The algorithm for adaptive boosting consists of the following steps:

1. Initialize the weights for each weak classifier: w(1)
i = 1/N for all i.

2. For all classifiers (m = 1, . . . ,M) do:

(a) Train weak classifier m with given weights, minimizing weighted error:

ϵm =

∑
i w

(m)
i I( fm(xi) , yi)∑

i w
(m)
i

, (1.10)

and count the weight of the m-th classifier αm = ln 1−ϵm
ϵm

.

(b) Update the weights for all i according to the following formula:

w(m+1)
i = w(m)

i exp(αmI( fm(xi) , yi)). (1.11)

This learning process produces the final classifier in the form of a linear combination given by equa-
tion [12]:

g(x) = sign

 M∑
m=1

αm fm(x)

 . (1.12)

1.4 Artificial Neural Networks

These machine learning algorithms are inspired by human biology. The main idea behind this ap-
proach is to construct a network of so called neurons, which operate in parallel [7]. Unlike other machine
learning approaches, artificial neural networks (ANNs) learn the representation of given data, which be-
comes increasingly abstract in each layer. However, human input in form of specifying the parameters is
still needed even for these learning algorithms.

One of the first artificial neuron models was the perceptron (see Figure 1.6). It works for a two-class
classification problem where the data are linearly separable. The equation for the separating hyperplane
in this case yields:

f (w) = wT x = 0, (1.13)

where x = (x1, x2 . . . , xn, 1)T is a vector of inputs, w = (w1, w2, . . . , wn+1)T is a vector of the correspond-
ing weights and f is called input function. When performing classification on linearly separable data
with two classes C1 and C2, the aim is to find weights that satisfy the following condition:

wT x

> 0 if x ∈ C1

< 0 if x ∈ C2.
(1.14)

Let w(1) be the weight vector of arbitrary values, x(k) the pattern vector corresponding to step k and
α > 0 the learning rate. Then the training algorithm for step k of the perceptron is following [13]:
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Figure 1.6: The composition of artificial neuron called perceptron.

1. if x(k) ∈ C1 and wT x(k) ≤ 0, let w(k + 1) = w(k) + αx(k)

2. if x(k) ∈ C2 and wT x(k) ≥ 0, let w(k + 1) = w(k) − αx(k)

3. else, let w(k + 1) = w(k).

Afterwards, activation function g is used to determine the class membership of given data. In this
case, the activation function is a thresholding function, which assigns the pattern to class C1 if the thresh-
olded output is 1 and to class C2 for this value equal to −1.

Artificial neurons in multilayer networks work in the same way as perceptron, differing mainly in
activation function. Some of the most frequently used activation functions in artificial neurons are:
sigmoid, rectifier linear unit (ReLU), hyperbolic tangent (see Figure 1.7) or in some instances softmax.
Training of these networks is performed using the backpropagation algorithm.

There are many different architectures of neural networks based on the way the network is connected.
Some of the most well-known are, for example, feedforward networks, convolution, radial basis function
networks, and many more [13].

Feedforward Neural Network

This network usually consists of several layers of neurons. The first one (input layer) is comprised
of the same number of neurons as is the feature vector dimensionality. The data processed in the input
layer are subsequently sent to the first hidden layer. Each layer receives the data, performs (previously
described) operations, and sends the output to the next one [7]. The number of neurons can differ in each
layer. Each neuron has only one output, which is connected to all neurons in the next layer to create
a fully connected network. If there is only one hidden layer in the network, it is called shallow, while
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Figure 1.7: Activation functions used in artificial neuron structures.

those with two or more are labeled deep. The number of layers of ANN is called its depth [13]. The last
hidden layer is connected to the output layer, which provides the values used for determining the final
decision [7]. Examples of deep and shallow feedforward neural networks are shown in Figure 1.8.

As mentioned in the previous text, the training of ANNs is done by backpropagation. The backprop-
agation algorithm for these types of networks consists of four basic steps [13]:

1. input of the training data,

2. classification of the data by network and the determination of its error,

3. computation of required changes, that minimize the error, is carried out by passing the error
through the network,

4. the model weights are updated, and the process is repeated until the error reaches an acceptable
level.

Convolutional Neural Network

The main difference between convolutional neural networks (CNN) and feedforward networks is that
they use convolution as an input function in certain layers. This allows the input of these networks to
have an image format or similar grid-like form. Instead of previously extracted features, these ANNs
learn the patterns directly from given images. Therefore, these types of networks are well suited for
image processing applications [13].

Aside from the input and output layer, a CNN is commonly comprised of three types of layers -
convolutional, pooling and fully connected. This structure is shown in Figure 1.10.

• Convolutional layers use kernels, which are convolved with the input. The kernel is the same
depth as the input, has low spatial dimensionality, and is applied to the whole image. A hyper-
parameter called stride is used to define the step size with which the kernel is moved through the
input in the process of convolution. The output depth can be controlled by the number of neurons
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(a) (b)

Figure 1.8: Examples of feedforward (a) deep and (b) shallow neural network structures.

in a given layer and also by using zero-padding. Same as in previously described ANNs, an acti-
vation function is applied to the outcome of convolution. An example of how this layer performs
convolution on an image is shown in Figure 1.9.

Figure 1.9: The convolution of input image with 3 × 3 × 3 kernel [14].

• Pooling layers are used to reduce the spatial dimensionality of the data, which is done by con-
volution with kernels. These are usually max-pooling layers of size 2 × 2 with the stride set to
two [15]. This method of pooling is done by moving the kernel along the input by the given stride
and returning the maximum value of the covered portion of the data.

• The fully-connected layer functions in the same way as a typical ANN. The image is flattened
and a feedforward neural network with a soft-max activation function is used [14].
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Figure 1.10: An example of CNN structure [14].



Chapter 2

Face Detection Challenges

As we learned in the previous chapter, face detection is a two-class recognition task. Therefore,
the same challenges as in object-class recognition might be encountered. When dealing with faces, we
observe exceptionally high intraclass variability caused by many factors such as different facial shapes,
colors, makeup, facial hair, accessories, etc. [4]. Some of the main challenges that detection deals with
are presented in Table 2.1. All these different scenarios will very likely occur in a real-life application,
hence the need for unconstrained face detection algorithms. This term suggests that such a system should
work successfully regardless of the subject conditions or how the image was captured [16].

Table 2.1: Challenges in face detection, images from dataset [17].

Challenges Description Example

Different expressions
Odd facial expressions might
cause more within-class variation.

Occlusion

Part of the face could be covered by an
object, body part, facial hair, etc. It could
reduce accuracy as well as the detection
rate.

Illumination
Illumination changes in the image might
make faces less visible or reduce the ap-
pearance of certain anatomical traits.

Complex background
With more objects present in the back-
ground, the location of the faces becomes
less apparent.

18
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Too many faces
Too many faces present in an image takes
a toll on the detection rate and accuracy.

Resolution
Low image resolution can degrade the
face, making it more difficult to detect.

Skin color

Every human is different and so is their
skin tone, therefore not all face detection
algorithms work the same on all skin col-
ors.

Distance

Another important aspect in face detec-
tion, is the position of the captured human
with regards to the camera. In some cases
faces that are farther as well as faces that
are too close might be more difficult to de-
tect.

Pose

Since not all human images are taken
from the same angle in the same position,
pose is one of the challenges that this pro-
cess faces and has to deal with.

Face detection datasets

When dealing with face detection, the right tools for testing and, in many cases, training are required.
Therefore, several benchmark databases of images have been developed for this task. These vary in size,
format, and conditions under which the images were taken. The image databases range from sets of
frontal pictures taken in a controlled environment to fully unconfined settings, where all the detection
challenges in Table 2.1 are present.

Aside from detecting the location of ones face, extracting its features might be valuable information.
These features are called facial landmarks and represent facial regions such as the eyes, nose, mouth, and
many others. Different face detection methods might extract different numbers of facial landmarks, so
the number of these features annotated in different databases might vary. Among the facial annotations
that are regularly used are, for example, the 68 point annotation shown in Figure 2.1.

For the purposes of this thesis, only datasets with annotated facial landmarks will be considered, the
more suitable ones are shown in Table 2.2.
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(a) (b)

Figure 2.1: Landmark annotations with: (a) 68 points, used for example in the XM2VTS database [18];
(b) 98 points in the WFLW database [19].

Table 2.2: Face detection datasets.

Database Description

WFLW[20]

Database of color images containing an-
notations with 98 facial landmarks, as
well as binary annotations for different
face detection challenges present in im-
ages. Binary annotations include head
pose, occlusion, illumination, makeup,
and expression.

CelebA [21]

This dataset includes more than 200K
colored images of celebrities. It con-
tains large pose and background varia-
tions, occlusion, age, and ethnicity diver-
sities. The database is annotated with 5
landmarks, as well as other binary facial
attributes.

BioID [22]

This is a grayscale image database with
front view of captured faces. They are
annotated with 20 facial landmarks. The
images vary slightly in pose and expres-
sion. There is some occlusion and the
background is the same for all the images.
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XM2VTS [23]

Dataset contains frontal images in color,
annotated with 68 facial landmarks. It
includes no occlusion, slight variation in
ethnicity, and a uniform background un-
der ideal lighting conditions.

MUCT [24]

This database contains color images with
76 manually annotated landmarks. The
background of these images is uniform
and diverse in lighting conditions. It con-
tains a frontal view of faces, without oc-
clusion, but considerable variation in age
and ethnicity.



Chapter 3

Face Detection Approaches

As in any computer vision task, there are numerous approaches to solving the problem of face detec-
tion. These different techniques vary in robustness, execution time, accuracy as well as complexity and
each is better suited for a different task. This chapter aims to introduce some of the most widely used
face detection techniques.

According to [25], face detection algorithms can be divided into two main categories based on the
use of prior knowledge of the human face, which are feature based and image based techniques. The
classification of face detection methods is shown in Figure 3.1.

• Feature-based approach: This approach uses information about facial features, such as skin
color or facial geometry. Detection tasks are performed by manipulating measurements of angles,
distance, and area of visual features from the image. These techniques are divided into three
categories which are feature analysis, low-level analysis, and active shape models.

– The main focus of active shape models are physical, higher level appearance features [25].
These models aim to locate landmark points of an object. In an image of a face, these include
features such as eyes, nose, mouth or eyebrows. Active shape models can be further clas-
sified into three subcategories, which are Snakes, Point Distribution Model and Deformable
templates [1].

– The first step of low-level analysis is segmentation based on pixel properties such as its color
or intensity. This step generates ambiguous visual features. These are organized according to
facial geometry. The faces and facial landmarks are then detected using feature analysis [25].
Low-level analysis techniques can be based on edges, gray information, motion, skin color
and more.

– Feature analysis methods focus on finding structural features invariant to changes in view-
point, pose, or lighting conditions. These are subsequently used to localize faces in an image.
Feature analysis approaches include feature searching algorithms, among which one of the
most famous ones is the Viola-Jones face detector, and constellation analysis [1].

• Image-based approach: This approach is based on learning algorithms without the use of feature
derivation and analysis. It is classified into three categories, which are linear subspace methods,
neural networks, and statistical approaches [25].

– Linear algebra defines the linear subspace as a subset of vector space, which itself is a vector
space. In image processing, it is perceived as a smaller segment of a frame. Therefore,
faces in images belong to a subspace of the image space. Linear subspace methods focus

22
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Figure 3.1: Approaches in face detection.

on the representation of this subspace of facial images. These techniques include eigenfaces,
Fisherfaces or tensorfaces.

– Neural networks are series of algorithms based on human biology. Mimicking the struc-
ture of neural networks in the brain, they receive data and learn to recognize different pat-
terns [26]. They are frequently used in pattern recognition tasks and face detection can be
viewed as a two-class recognition problem. Thus, numerous neural network architectures
were designed specifically for this task [4]. An introduction to these algorithms was already
given in Chapter 1.

– Statistical approaches make use of statistics in face detection tasks. Statistical algorithms
used for face detection are, for example, Principal Component Analysis or Support Vector
Machine, which were described in Chapter 1 .

The next part of this chapter is focused on some of the most common face detection techniques.
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3.1 Viola-Jones Detector

This algorithm is one of the feature searching methods used in detection. Its main advantage is the
fast computation time and fairly high precision [1].

The Viola-Jones detector consists of three steps: the computation of integral image, using AdaBoost
for training strong classifiers and the construction of cascade classifier. The integral image is computed
from gray-level images. It is a fast and efficient algorithm used to compute the sum of the pixel values in
a rectangular window of the image. Its pixel at position (x, y) is given by the equation:

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′), (3.1)

where i(x, y) denotes a pixel of the original image at a given location. Afterwards, Haar-like features
are computed from this integral image. There are several types of Haar-like features (see Figure 3.2b),
for this algorithm, horizontal and vertical are used [27]. Vertical detect face parts such as forehead or
eyebrows, horizontal detect nose, for example (see Figure 3.2b). These features are created by calculating
the mean intensities in dark windows subtracted by the mean intensities of light windows. A Haar-like
feature is present in the image if this difference surpasses the given threshold [28].

(a) (b)

Figure 3.2: (a) Types of Haar-like features: (1) horizontal, (2) vertical edge features, (3) vertical line
feature, (4) diagonal line feature [28], (b) Illustration of what facial regions given haar-like features
symbolize in face image [28].

The AdaBoost algorithm (which was introduced in Chapter 1 Section 1.3) is applied to the extracted
features to select only the most critical ones, which form a classifier and the rest are discarded [1]. In
the last step, sub-windows of the image are categorized by a cascading classifiers. If the result of one of
these classifiers is negative (meaning image does not contain a face) for given sub-window, it is rejected
and the processing of this window ends [29]. The likelihood of each sub-window containing a face is
determined by the number of stages passed in this classification process [27]. Implementation of this
face detection algorithm can be found in the OpenCV library.

3.2 Histogram of Oriented Gradients and Linear SVM Detector

This approach combines feature extraction technique called histogram of oriented gradients with
linear support vector machine classifier (HOG+SVM). This method is invariant with respect to changes
in illumination and is capable to extract more complex facial features than linear filters used in the
previous algorithm [27]. The HOG features are extracted in following steps [30]:

1. An image is split into blocks, where histograms are calculated (see Figure 3.3) by filtering these
regions with kernels: [−1, 0, 1] and [−1, 0, 1]T .
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Figure 3.3: Image gradients in given block calculated in the first step of HOG feature extraction algo-
rithm [31].

2. A histogram using previously computed gradients is created based on their orientation and magni-
tude.

3. Overall histogram from the previous marginal histograms is formed, creating a feature vector.

4. Normalization to lighting changes over grouped blocks is carried out. Afterwards, the normalized
vectors are concentrated into a feature vector for the given image.

After extracting features using HOG algorithm, a simple linear SVM (described in Chapter 1) is trained
with these data [27]. This face detector is implemented an available in dlib library.

3.3 Multitask Cascaded Convolutional Networks (MTCNN)

This approach uses cascaded convolutional neural networks for face and landmark detection. It
consists of three stages (see Figure 3.4) [32]:

1. A pyramid is created by resizing the input image. This pyramid is passed through a fully convolu-
tional neural network (a CNN without the fully connected layers) - proposal network (P-Net). The
output of this network is windows that might obtain faces, as well as their bounding boxes. These
candidates are calibrated and if overlapping, merged using non-maximum suppression.

2. Previously extracted facial region candidates are fed to different CNN - refine network (R-Net).
This network discards number of false positives and, same as in the previous step, calibration
followed by non-maximum suppression is carried out.

3. Last stage of this process uses output network (O-Net). It is similar to the previous stage, except
in this stage, the output are facial landmarks.

The structure, layers and outputs of the previously mentioned CNNs are shown in Figure 3.5.
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Figure 3.4: Pipeline of MTCNN face detection technique [32]

Figure 3.5: Composition of the three types of networks used in MTCNN pipeline [32]

3.4 RetinaFace

This approach simultaneously detects a bounding box as well as facial landmarks (eyes, corners of
the mouth and nose) and 3D vertices for each facial region. Joint learning process is used to achieve
this goal. Three main components of RetinaFace approach to face detection are: the feature pyramid
network, the context module and the cascade multi-task loss [33]( Figure 3.6 and Figure 3.7).

1. The first step consists of generating a feature pyramid network (FPN). These networks are used
for detection in varying scales of input images and further information about them can be found
in [34]. In this particular case, the first four levels of the pyramid are computed using a Residual
Network (ResNet). ResNet is a neural network that skips one or more layers, allowing the training
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of very deep networks [35]. The last (fifth) level of the FPN is computed through convolution on
the previous level.

2. Context module is used to improve detection by using context. In this pipeline, deformable con-
volutional networks (DCNs) are used on five levels of the pyramid [33]. DCN is a convolutional
neural network designed to overcome the inability of CNNs to learn geometric transformations
from given data [36].

3. The output of the context module is a multitask-loss. This loss function is defined for every
training anchor i as:

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) + λ3 p∗i Lmesh(vi, vi∗), (3.2)

where ti, li, vi are box, landmarks and vertices predictions for facial region corresponding to the
actual t∗i , l∗i , v∗i . Symbol pi is the probability of each anchor being a face with its corresponding
ground truth being p∗i . Loss functions Lcls, Lbox, Lpts, Lmesh are classification, box, points and
mesh regression loss. Parameters λ1, λ2 and λ3 are called loss-balancing parameters [33].

Implementation of this approach can be found on GitHub [37].

Figure 3.6: The composition of RetinaFace network structure [33].

Figure 3.7: RetinaFace multitask loss [33].



Chapter 4

Experiments and Evaluation

The previous chapter introduces some of the methods commonly used for face detection, which will
be evaluated in this chapter. Experiments were carried out using MTCNN (implemented on GitHub [38]),
RetinaFace (from GitHub [39]), dlib implementation of the histogram of oriented gradients combined
with linear SVM detector, and OpenCV implementation of the Viola-Jones detector. These methods
were chosen because of their effectiveness, accessibility, and ability to detect faces, as well as some
facial landmarks. All the detectors were tested using Python. For each approach, a set of five facial
landmarks (left eye centre, right eye centre, tip of the nose, left mouth corner, and right mouth corner)
was extracted along with a bounding box for the given facial region. Both results for RetinaFace and
MTCNN are in form of these five landmarks and detection box. However, the landmark annotations
for HOG+SVM and Viola-Jones do not contain the location of the eye centers, just the eye corners.
Therefore, the location of each eye was calculated as the middle of the segment connecting these corner
points.

4.1 Datasets

Datasets chosen for the evaluation are WFLW and CelebA test sets (a further description of the
images included in these collections was given in Chapter 2). Both collections of face images are set in
unconstrained conditions and contain facial landmark annotations important for testing algorithms ability
to detect the chosen regions that the methods are trained to label. Another requirement for these sets of
images was that they were not used for training of the chosen face detection approaches. This ensures
that the results are unbiased. CelebA and WFLW datasets contain binary annotations for different image
and face attributes. WFLW, for example, has images of faces with occlusion, heavy makeup (over 200
images), illumination (almost 700 images), more expressive facial expressions (around 300), or poses
(over 300) labeled (see examples in Figure 4.1). In CelebA, image annotations include faces with glasses
(approximately 1300 images) and blurry images (over a 1000).

Another dataset used for the evaluation was created from the Vienna City Library’s collection of
posters. It is a set of more than 5000 posters scanned in high resolution. These include, for example,
different advertisements, documents, and political messages. For the experiments, I chose and labeled
almost 130 images with a bounding box containing each face and five landmark points representing
the center of each eye, nose, and mouth corners (see example of these images in Figure 4.2). Among
these are images containing multiple faces, faces with occlusion, variable background, age, ethnicity,
and lighting conditions. These images were labeled using Label Studio. This open source labelling tool,
however, does not allow to do both bounding box and keypoint labelling simultaneously. Therefore, I

28
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Figure 4.1: Examples of images in challenging subsets of WFLW [40].

Figure 4.2: Example of posters from the Vienna City Library, which were used to create a dataset for
experiments.

used boxes to mark facial landmarks and extracted only the left corner point of the rectangle which was
placed in the sought after keypoint (see example in Figure 4.3).

4.2 Evaluation metrics

One of the most common metrics used for the evaluation of face and facial landmark detection is
normalized mean squared error (NME) defined as:

NME =
1
K

K∑
k=1

NMEk, (4.1)
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Figure 4.3: Labelling setup for the Vienna City Library dataset.

where

NMEk =
1

NL

NL∑
i=1

∥∥∥|Yi − Ŷi
∥∥∥

d
× 100. (4.2)

K denotes the overall number of images in dataset, Ŷ and Y are experimental and the ground truth
coordinates of given landmarks, d is a constant for each set called normalization coefficient and NL is the
number of landmarks for given facial region.

Another useful metric showing the number of images where the NME exceeds 10 % is called the
failure rate (FR) and is defined as:

FR =
1
K

K∑
k=1

[NMEk ≥ 10 %], (4.3)

using the same notation as (4.1) [41].
The intersection over union (IoU) is calculated from the ground truth box and the bounding box

produced by experimental results. It is used in object detection to determine whether boxes overlap (see
Figure 4.4) and is defined as [42]:

IoU =
predicted ∩ ground truth
predicted ∪ ground truth

. (4.4)

I use this ratio to conclude if the method correctly identified the facial region. While evaluating the
face detection accuracy, the IoU is first calculated and then based on a minimum threshold, which was
set for this metric, true positives (tp), false positives (fp) and false negatives (fn) in face detection are
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Figure 4.4: Visualization of intersection over union of two bounding boxes.

determined. Using this information, precision, recall and F1 score metrics can be calculated according
to following equations [43]:

Precision =
tp

tp + f p
, (4.5)

Recall =
tp

tp + f n
, (4.6)

F1 Score = 2 ×
Precision × Recall
Precision + Recall

. (4.7)

4.3 Results

Facial Landmark Detection

The NME (with normalization coefficient d in Equation (4.2) set to the distance between the eye
centres) was calculated from correctly detected faces according to IoU (at least 50%) and the results for
different datasets are shown in Table 2.2.

Table 4.1: NME [%] for tested face detection approaches on given datasets.

Face Detection
Approach

Dataset
WFLW CelebA Vienna City Library

RetinaFace 0.9843 1.7279 1.657
MTCNN 0.985 1.1971 1.4929

Viola-Jones 1.8003 2.7953 2.5119
HOG+SVM 1.0089 1.6744 1.9811

Table 4.1 and graphs in Figure 4.5 show that for almost every dataset, the MTCNN approach yields
the best results from the NME metric. Only RetinaFace was able to achieve a lower score in the WFLW
dataset, differing only in the thousandth of a percent. Thus, MTCNN is the best performing method for
a given task. The worst performing approach according to NME is the Viola-Jones detector yielding by
far the worst score on all datasets.

The ability of chosen face detection methods to deal with different detection challenges was tested
on the subsets of WFLW and CelebA, and the resulting NME metric for each approach is shown in
Table 4.2.



CHAPTER 4. EXPERIMENTS AND EVALUATION 32

0

1

2

Dlib MTCNN OpenCV RetinaFace
Face Detection Approach

N
M

E
 [%

]

Dataset
CelebA
Vienna City Library
WFLW

(a) Bar graph showing how the NME metric
differs for each method on chosen datasets.

0

1

2

CelebAVienna City Library WFLW
Dataset

N
M

E
 [%

] Face Detection Approach
Dlib
MTCNN
OpenCV
RetinaFace

(b) Bar graph showing how the NME metric
differs between chosen face detection
approaches on each dataset.

Figure 4.5: Visualization of data from Table 4.1 in bar graphs.

Table 4.2: NME [%] for detection on more challenging images from datasets (WFLW, CelebA) facing
less ideal conditions.

Face Detection
Approach

Challenge
Illumination Makeup Expression Pose Glasses Blur

RetinaFace 1.0191 1.1757 1.10157 1.1596 2.1778 1.5798
MTCNN 0.9475 1.3133 1.0216 1.7556 1.6834 1.1619

Viola-Jones 1.6456 3.9853 1.526 4.184 3.6929 2.1528
HOG+SVM 1.0194 1.4246 1.0828 1.5974 2.2345 1.5681

Figure 4.6 shows the NME in Table 4.2 and the same metric on the datasets without the images
used for these calculations to visualize their difference. As can be seen from these results, illumination
has almost no impact on any of these landmark detection approaches. Faces with heavy makeup pose
a challenge for the Viola-Jones detector, causing the error to increase by more than 2%. Unusual facial
expressions cause very little increase in NME for all the detectors, making them very well suited for
detecting facial landmarks in these conditions. Viola - Jones detector appears to be less suited for detect-
ing these keypoints on non-frontal faces. This condition causes its NME to increase by approximately
4% compared to the only frontal face dataset, which might be because of its feature based character.
MTCNN, RetinaFace and HOG+SVM have the biggest rise in NME when faces are partially covered
with glasses. This error drops to almost zero percent for these methods, when images containing the
mentioned attributes are excluded. Although these methods work better in images where faces are not
covered with eyewear, their NME is very low even when such situations occur. Experiments with blurry
images showed that this condition is less likely to cause problems in facial landmark detection using
chosen methods. The NME in Figure 4.8f appears slightly higher for images that are not blurry for some
methods. This might be due to the higher complexity of this subset compared to the rest of the images.
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Figure 4.6: NME metric for different approaches on subset of given datasets with and without common
face detection challenges.

With the use of NME, the failure rate was also calculated on given datasets corresponding to Equa-
tion (4.3), and is shown in Table 4.3. HOG+SVM outperformed other approaches in the FR metric on
almost all the datasets. This shows that while this approach is not the most effective overall, it is the
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Table 4.3: FR [%] calculated using the NME for each method on all datasets.

Face Detection
Approach

Dataset
WFLW CelebA Vienna City Library

RetinaFace 0.3238 0.30122 0.7143
MTCNN 0.3454 0.2621 0

Viola-Jones 2.6946 2.9215 2.4793
HOG+SVM 0.2894 0.1374 0.7752

least likely to fail to detect the approximate location of facial landmarks. However, the failure rate for
MTCNN and RetinaFace was very close to HOG+SVM, showing very good results for these methods.
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Figure 4.7: Visualization of data from Table 4.3 in bar graphs.

FR was also calculated for all challenging subsets and the results are shown in Table 4.4 and Fig-
ure 4.8.

Table 4.4: FR [%] for detection on more challenging images from datasests (WFLW, CelebA) facing less
ideal conditions.

Face Detection
Approach

Challenge
Illumination Makeup Expression Pose Glasses Blur

MTCNN 0.3236 0 0.3378 1.7301 0.6275 0.101
RetinaFace 0.4367 0 0.6472 0.6211 0.4691 0.1998
HOG+SVM 0.3976 0.7246 0 1.9802 0.5978 0.1529
Viola-Jones 2.0513 6.5934 2.5477 11.7647 4.3967 1.6949

These results show again that Viola-Jones fails in detecting facial landmarks much more often for
images containing faces with makeup, glasses, and non-frontal poses. According to this metric, other
approaches are better suited to deal with these conditions.
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Figure 4.8: FR metric for different approaches on subset of given datasets with and without common
face detection challenges.



CHAPTER 4. EXPERIMENTS AND EVALUATION 36

Face Box Detection

Intersection over union was calculated for each facial region to determine the number of true posi-
tives, false positives, and false negatives in face detection. The threshold for this was set at least 50%
for acceptable detection and then 75% (more precise detection). Both percentages of IoU were used to
test the algorithms precision in face detection. By observing the WFLW dataset, I found that it included
a larger number of unlabeled faces. Therefore, I decided to calculate the following metrics only on the
Vienna City Library and CelebA datasets. Table 4.5 shows the precision, recall, and F1 score metrics
for the face detection approaches tested. The results show that the HOG+SVM method outperformed all

Table 4.5: Precision, recall and F1 score for bounding box detection on Vienna City Library and CelebA
datasets.

Face Detection Approach minimum IoU Dataset Precision Recall F1 score
MTCNN 0.5 CelebA 96.45% 99.40% 97.90%
RetinaFace 0.5 CelebA 95.04% 99.79% 97.36%
HOG+SVM 0.5 CelebA 99.27% 94.80% 96.98%
Viola-Jones 0.5 CelebA 91.24% 87.06% 89.10%
MTCNN 0.5 Vienna City Library 97.74% 94.89% 96.30%
RetinaFace 0.5 Vienna City Library 88.05% 97.90% 92.72%
HOG+SVM 0.5 Vienna City Library 100.00% 95.56% 97.73%
Viola-Jones 0.5 Vienna City Library 88.32% 91.67% 89.96%
MTCNN 0.75 CelebA 96.03% 99.39% 97.68%
RetinaFace 0.75 CelebA 94.60% 99.78% 97.12%
HOG+SVM 0.75 CelebA 99.22% 94.79% 96.96%
Viola-Jones 0.75 CelebA 89.80% 86.88% 88.32%
MTCNN 0.75 Vienna City Library 97.74% 94.89% 96.30%
RetinaFace 0.75 Vienna City Library 87.42% 97.89% 92.36%
HOG+SVM 0.75 Vienna City Library 100.00% 95.56% 97.73%
Viola-Jones 0.75 Vienna City Library 88.32% 91.67% 89.96%

the other methods in the precision metric on the remaining datasets. Thus, this experiment demonstrated
that the method is the most precise of all models in detecting faces, producing the smallest number of
false positives. RetinaFace had lower precision on the created Vienna City Library dataset compared
to CelebA. This decline was caused by images that contained very small faces, which were not even
noticed during the labeling process, only upon closer inspection during evaluation. This dataset is also
the smallest in number of images, thus these errors might be more apparent in the results. As it can be
seen from Table 4.5, the recall for this method is the highest on every dataset. Thus, this approach is
the least likely of all to miss a face in an image. HOG+SVM had a worse recall metric than precision,
meaning that it is more likely to not detect a face than produce a false positive. Although RetinaFace and
HOG+SVM were the best preforming detectors in given metrics, MTCNN was very close in both met-
rics, showing excellent results in face box detection. The Viola - Jones detector had the lowest precision
as well as recall from all the methods. This means that it had the highest rate of false detections as well as
the number of faces that were not detected, making this method the least effective. The F1 score metric
combines both precision and recall. From this metric, it is evident that the MTCNN and HOG+SVM are
the best performing approaches in face detection on both datasets with RetinaFace outperforming them
on the CelebA set.
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Precision, recall, and F1 metrics were also calculated for CelebA subsets containing faces with
glasses and blurry images alone. This experiment aims to determine whether these conditions affect
face box detection. The results are shown in Tables 4.6 and 4.7

Table 4.6: Performance metrics calculated on the subset of images with faces wearing glasses from the
CelebA dataset.

Face Detection Approach minimum IoU Precision Recall F1 score
MTCNN 0.5 96.89% 98.92% 97.90%
RetinaFace 0.5 95.61% 99.23% 97.39%
HOG+SVM 0.5 99.40% 90.83% 94.92%
Viola-Jones 0.5 91.88% 75.78% 83.06%
MTCNN 0.75 96.06% 98.91% 97.46%
RetinaFace 0.75 94.87% 99.22% 97.00%
HOG+SVM 0.75 99.40% 90.83% 94.92%
Viola-Jones 0.75 90.46% 75.49% 82.30%

Table 4.7: Performance metrics calculated on the subset of blurred images from the CelebA dataset.

Face Detection Approach minimum IoU Precision Recall F1 score
MTCNN 0.5 94.28% 98.02% 96.11%
RetinaFace 0.5 91.01% 99.11% 94.89%
HOG+SVM 0.5 99.39% 64.68% 78.37%
Viola-Jones 0.5 93.95% 75.80% 83.90%
MTCNN 0.75 93.61% 98.00% 95.76%
RetinaFace 0.75 90.10% 99.10% 94.39%
HOG+SVM 0.75 99.39% 64.68% 78.37%
Viola-Jones 0.75 92.59% 75.53% 83.19%

These experiments revealed that HOG+SVM and Viola-Jones are more likely to fail at detecting
faces partially covered with glasses and faces in blurry images. The remaining methods are unaffected
by these conditions in terms of face box detection, showing very high values in all performance metrics.

4.4 Experiment Evaluation

Publicly availble implementations of four face detection approaches (MTCNN, RetinaFace, Viola-
Jones, HOG+SVM) that produced (at least) five facial landmarks and bounding boxes were tested on
three different datasets (CelebA, WFLW, Vienna City Library). The normalized mean error, failure rate,
precision, recall, and F1 score metric were used to evaluate the performance of these methods on all
image sets. Subsequently, CelebA and WFLW subsets containing images with common face detec-
tion challenges were extracted and used to evaluate these methods under more complicated conditions.
MTCNN outperformed other methods in NME with RetinaFace and HOG+SVM yielding very similar
results. HOG+SVM achieved the lowest failure rate in almost all datasets, showing that it rarely fails
(has NME higher than 10%) in landmark detection. Both the RetinaFaces and MTCNNs results were
in close proximity to HOG+SVM with Viola-Jones again having the worst performance. Testing facial
landmark detection on more challenging subsets showed that Viola-Jones is highly sensitive to face pose
changes, faces with heavy makeup, and faces wearing glasses. RetinaFace, MTCNN and HOG+SVM
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achieved very low NME values and FR metric values on all of these subsets, only showing a little higher
NME values on subset with glasses present. For face box detection, IoU was calculated to determine
the precision of the facial bounding box. Setting the threshold for IoU to 50% and 75% allowed me
to determine the number of true positives, false positives and false negatives, which led to the calcula-
tion of precision, recall, and F1 score. These results showed that HOG+SVM was most precise while
RetinaFace achieved the best recall values. Overall MTCNN, RetinaFace and HOG+SVM were the best
at detecting faces in image, while Viola-Jones showed to be less successful at this task with F1 score
on all datasets under 90%. These metrics evaluated on challenging subsets remained high for all of
the approaches except Viola-Jones, which turned out to be more sensitive to blur and people wearing
glasses when detecting faces. HOG+SVM recall also seemed to decrease to little over 90% when the
faces were partially covered with glasses and to approximately 64% for blurry images. These results
show that the best-suited approaches for face detection in an unconstrained environment were MTCNN
and RetinaFace. HOG+SVM would be best suited for face detection on images that are not blurred, and
Viola-Jones is the most likely to fail at this task in more challenging conditions.



Conclusion

The goal of this research thesis was to describe common face detection approaches, choose the most
suitable ones for detection under unconstrained conditions, and test them on appropriate datasets. For
the experiments, I selected publicly available implementations of MTCNN, RetinaFace, histogram of
oriented gradients and linear SVM detector (implemented in dlib) and the Viola-Jones detector (OpenCV
implementation). Datasets selected for this task were the testing sets from WFLW, CelebA, and a dataset
created from the Vienna City Library collection of posters, which I manually labeled with face bounding
box and five facial landmark coordinates (representing the centre of left eye, the centre of right eye, tip of
the nose, left mouth corner, and right mouth corner). Subsets from the CelebA and WFLW sets containing
more challenging images (with blur, illumination, heavy makeup, non-frontal poses, and glasses present)
were extracted to determine the capability of chosen approaches to deal with these conditions. All these
publicly available methods were tested on almost 22 630 images using Python.

The results show that most of these detectors perform well under various conditions. MTCNN,
RetinaFace and HOG+SVM achieved high accuracy in bounding box detection on CelebA and Vienna
City Library datasets, with Viola-Jones reaching the lowest precision, recall, and F1 score metrics on
almost all the sets. Lower precision values for RetinaFace on the Vienna City Library set was caused
by this method being able to detect very small faces, which were hardly noticeable by the human eye
and therefore remained unlabelled. On more challenging subsets of CelebA, RetinaFace and MTCNN
performed very well, achieving high performance metric values for bounding box detection. Viola-Jones
reached low recall values for both the subset with blurred images and the subset containing images of
people with glasses. This means that these conditions cause the detector to fail in finding faces. This
shortcoming for the Viola-Jones detector was however anticipated, since the method is feature-based.
HOG+SVM also performed poorly in terms of recall on these subsets, which might also be a result of its
feature-based character.

The detection of facial landmarks was tested using the NME and FR metrics. Both were calculated
from images where the detectors were able to correctly identify facial regions and normalized by the
ground truth distance between eye centres. All methods achieved a relatively low NME on the datasets,
with Viola-Jones having the highest NME of all on the CelebA dataset of almost 3%. NME for the subsets
of images showed that all the detectors were successful in accurately locating facial landmarks under
difficult conditions. Viola-Jones again reached highest NME on dataset containing faces with heavy
makeup, dataset of faces with glasses and non-frontal faces. According to the failure rate calculations,
it is rare for the chosen face detection approaches to fail at locating facial landmarks even in the more
difficult conditions. Viola-Jones was found to have the highest failure rate of all detectors. It was more
prone to fail to detect facial landmarks when difficult poses or heavy makeup was present.

MTCNN, RetinaFace and HOG+SVM methods were found to be well suited for facial landmark
localization even under challenging conditions. However, HOG+SVM struggled in face detection under
less ideal circumstances. Even though Viola-Jones was the worst performing method, results show that it
would be a good option for face detection and landmark localization under more optimal conditions. The
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experiments demonstrated that in an unconstrained environment, neural network approaches (MTCNN,
RetinaFace), work the best for face detection and landmark localization.

Results show that RetinaFace and MTCNN are very well suited for face detection under uncon-
strained conditions, meaning that these methods would have the potential to be successful in real world
applications. However, in some applications, computing time of these methods might be of essence. This
thesis does not contain experiments that compare said characteristic which might alter the suitability of
tested approaches for some tasks.

Face detection is a stepping stone to a lot of face-related computer vision application. These methods
might be further used in tasks such as face recognition, authentication or facial analysis in the real world
conditions.



Bibliography

[1] Ashu Kumar, Amandeep Kaur, and Munish Kumar. “Face detection techniques: a review.” In:
Artificial Intelligence Review 52.2 (2019), pp. 927–948.

[2] Stefanos Zafeiriou, Cha Zhang, and Zhengyou Zhang. “A survey on face detection in the wild:
past, present and future.” In: Computer Vision and Image Understanding 138 (2015), pp. 1–24.

[3] Mayank Chauhan and Mukesh Sakle. “Study & analysis of different face detection techniques.” In:
International Journal of Computer Science and Information Technologies 5.2 (2014), pp. 1615–
1618.

[4] Ming-Hsuan Yang, David J Kriegman, and Narendra Ahuja. “Detecting faces in images: A sur-
vey.” In: IEEE Transactions on pattern analysis and machine intelligence 24.1 (2002), pp. 34–
58.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[6] Javaid Nabi. Machine Learning —Fundamentals. en. May 2019. url: https://towardsdatasc
ience.com/machine-learning-basics-part-1-a36d38c7916 (visited on 07/01/2022).

[7] Jan Flusser, Tomáš Suk, and Barbara Zitová. 2D and 3D Image Analysis by Moments. English.
1st edition. Chichester, West Sussex, United Kingdom ; Hoboken, NJ: Wiley, Dec. 2016. isbn:
978-1-119-03935-8.
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