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Obor: Aplikace informatiky v př́ırodńıch vědách
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Computer Vision Lab, Institute of Visual Computing & Human-
Centered Technology, TU Wien - Faculty of Informatics

Konzultant: –
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Introduction

This paper is aimed at optical character recognition and focuses on comparison of
different methods that are used in this branch of image processing. The goal of the
paper is to test selected methods with various parameters on different datasets. One
of the datasets includes historical posters from Vienna City Library. This dataset
needed to be selected from a broad database of posters and manually labeled.

In the first chapter I introduced terms used in optical image recognition and
described main tasks – text detection and recognition. This is followed by a brief
description of the structure of text image data accompanied by commonly used
dataset examples.

The next chapter is dedicated to neural networks, which play a leading role
in image recognition and in reading text tasks. I proceed from the basic network
architecture to more complex networks that were developed for image and text
recognition.

In the third chapter is a description of four selected methods I had chosen as
methods to be tested for the purpose of this paper.

The last chapter is about performed experiments. It includes information of
selected datasets, a description of implemented functions and above all a discussion
about results obtained in the experiments.

In the appendix there are image examples of predictions and ground truth of
selected historical posters.
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Chapter 1

Optical Character Recognition

Optical character recognition (OCR) is a branch of digital image processing. Its
aim is to detect and convert a text on an image into a machine-readable text. This
discipline can be divided into three similar, yet different tasks: reading text on
scanned printed documents, reading of handwritten texts and scene text recognition
(also called text in the wild). The first task is very well developed, first successful
results date back to the second half twentieth and were used in commercial sector
[24]. If we assume the handwritten text is on scanned single colored paper or created
using a digital pen and that it was written legibly and without omitting letters in
words due to fast writing, then recognition is similar to printed documents. The last
task – scene text recognition (STR) is the most challenging one. The main factors
that make STR a more difficult task are listed below.[6, 26]

• Complex background: in scanned documents background is white and without
a distinctive pattern (omitting lines is an easy preprocessing task), while in
scene images there are objects that can be mistaken for letters.

• Text diversity: text can appear in various colors, fonts, sizes or orientations.

• Distortions: photographs often suffer from noise due to bad illumination, also
from motion or out-of-focus blurring, perspective distortion due to the cap-
turing angle. Other problems come from the insufficient resolution that might
be set on the camera.

Apart from these main categories of image text data there exist born-digital
images (e. g. web advertisements or any cases where text was digitally added on
images or videos) and poster/newspaper images. These share with scene images the
diversity of text but are free from visual distortions caused by cameras. Examples
of different image data are in sections 1.3 and 4.1.

Digital reading of a text on an image consists of two main tasks – text detec-
tion and text recognition. Both processes are described in the next sections. The
structure can be seen in the Fig. 1.1.
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Figure 1.1: The structure of OCR tasks.

1.1 Text Detection

The first phase of digital text processing is to detect the text regions on the image.
The goal is to determine a bounding box surrounding a group of letters – usually
one word, but it can be also a text line consisting of few words. This box may be a
bounding rectangle or a polygon which is more accurate for curved or skewed text.
It is ideal when the bounding box contains the letters with as little background
as possible. The methods store this information as a set of coordinates which un-
ambiguously define the box, some methods produce cropped images based on the
coordinates or a binary image with highlighted detected area.Methods used for text
detection can be categorizes into formerly used classical machine learning methods
and deep learning methods.

Classical Methods

Classical methods include connected component methods and sliding window meth-
ods. In the latter method an image is scanned with a moving window of certain
size. In each position of the window features are computed, for example, standard
deviation or histogram of oriented gradients and are compared with values known
from training images with text. This approach does not have a good response for
scene images, because many objects can be misunderstood as letters and vice versa.
Connected component based methods extract from the image features like color,
texture, edges or corners. Then they are classified either as text or non-text by a
traditional classifier such as support vector machines, nearest neighbor or random
forest. Detected letters are then combine into words or text lines if desired [26].
Classical methods are generally not very successful with scene images where most
of the observed values are negatively influenced by distorting factors listed above.
In recent years the development of neural networks enabled a new, efficient way of
detecting text in images.

Deep Learning Methods

Deep learning methods are faster, more precise than the classical methods. They
are automated and need less of human assistance therefore they can process bigger
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amounts of data. Another advantage is that algorithms can be generalized and used
for other image detection tasks. Most of the state-of-the-art methods utilize convolu-
tional neural network (CNN). Deep learning methods can be split into bounding-box
regression based, segmentation based and hybrid methods according to the survey
of Raisi et al.[26].

Bounding-box regression based methods treat text as an object and predict di-
rectly the bounding box around text. However, the bounding boxes have different
aspect ratio than typical objects, because text is usually long and thin. Some meth-
ods decompose the text on smaller units and concentrate on distances between the
units. These methods are hard to tune during training an usually fail on distinctly
curved text. Examples of bounding-box methods are TextBoxes [20], TextBoxes++
[19] or EAST [38]. Segmentation based methods investigate the image at pixel level.
The image data are processed by a CNN which produces a segmentation map from
which a bounding box is generated. An example of this method is PSENet [36].
Hybrid methods combine the features obtained by regression and the segmentation
map from CNN. The segmentation methods tend to return false positive detection.
They select pixels that are not text at the borders of letters or when there is a com-
plicated background. Hybrid methods further process the results from segmentation
and precisely detect text. Example methods are PMTD [21].

A popular method in recent years is Character Region Awareness for Text De-
tection – CRAFT. This method in contrast to the previously mentioned methods
detects text based on character level rather than word (group of characters) level.
CRAFT trains a CNN which produces two results for a character – a region score
and an affinity score. Because this method goes over individual characters it per-
forms very well on curved and deformed text and outperforms 15 popular detection
methods according to the authors of CRAFT in their paper [4].

1.2 Text Recognition

Text recognition converts a detected text on an image to a string. Analogous to
detection methods again recognition methods can be divided to classical methods
and deep learning methods. Traditional methods work with image features such as
histogram of gradients, features from SIFT1, which are then classified by SVM or
nearest neighbor algorithms. Moreover methods can be divided on segmentation
based and segmentation free methods. The former classify single characters grad-
ually and then connect them into a word. The latter examine the text line as a
whole, so it can use word neighborhood for contextual information. In the following
subsection four stages of segmentation free methods are described.[6, 26]

1Scale-Invariant Feature Transform
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Segmentation Free Methods

Segmentation free methods follow a pipeline with four stages: image preprocessing,
feature representation, sequence modeling and prediction.

1. Image Preprocessing Stage: during this phase visual quality of the image is
improved as much as possible. Because in scene images background is usually
not a plain color, but a complex mixture of colors in various shape, the effort
is to replace it and create optimally a binary image with one color for the
foreground text and another for the background. It can be achieved by using
neural networks. If complete background removal is not easily achievable, basic
image preprocessing such as noise removal are performed at least. Optional
enhancement for scene images is to increase readability via superresolution,
this removes noise caused by low resolution of the original image. If the text
is perspectively distorted or curved there is an effort to straighten the text,
this process is called rectification. It is a computationally expensive process,
therefore it is not used very often.[6]

2. Feature Representation Stage: now it is necessary to extract features
from the image data that are used as a representation of objects (text) in the
images. For this purpose CNNs are widely used. For example namely these
types VGGNet, ResNet, DenseNet, recurrent CNN (RCNN).

3. Sequence Modeling Stage: An optional step between final prediction and
features. A contextual information is obtained via a recurrent neural network.
Mostly one of two types called long short-term memory (LSTM) and bidi-
rectional long short-term memory (BLSTM) is applied. The information is
utilized during the last stage for predicting subsequent characters rather then
predicting each character individually.

4. Prediction: in this last stage the model returns a target word or text line
that was recognized. Two major technologies are connectionist temporal clas-
sification (CTC) and the attention mechanism. Because some letters span
more than others it may happen that the letter is classified multiple times,
to avoid this CTC introduces a blank symbol and inserts it among characters
in various locations and creates character sequences. CTC then trains the
network to maximize the probability distribution over all possible sequences.
This approach is to a great extent dependent on a lexicon or language infor-
mation about word formation. Attention-based methods utilizes RNNs [18].
”The attention mechanism learns the alignment between the input instance
image and the output text sequences by referring to the history of the target
characters and the encoded feature vectors” [6, page 12].

1.3 Datasets

Optical Character Recognition requires data as any other machine learning task.
Data are usually divided in two main types - scene and synthetic. Scene datasets
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contains photographs of real world objects and sceneries where some text occurs, for
example shop signs, road signs or car plates. Synthetic dataset are automatically
generated images where words are chosen from a extensive dictionary, a font is picked
for each word and some sort of deformation is applied. It can be a text distortion to
make the text curved or projectively altered, as well as blurring or lighting changes
that make the text less obvious for the detector.

Synthetic datasets are usually used for training the models, because it is easier
to generate millions of synthetic images rather than to take even one hundredth of
a such number of photographs. Needless to say that when generating an image,
the ground truth is known and can be saved during the generation process while
photographs have to be manually labeled which takes time and might be inaccurate
or automatically labeled which also often leads to many mistakes. Scene datasets
are then used for testing purposes or for fine tuning a pretrained model.

In this paragraph sample datasets are introduced. To begin with synthetic
dataset MJSynth is a very important dataset because it consists of almost 9 million
images covering 90,000 English words. It includes data only for recognition which
means that one image has only one word and border of the image represents the
word bounding rectangle.[23]. Another synthetic dataset is called SynthText and
contains 800 thousand images with approximately 8 million word instances written
on the images [33]. Three scene text datasets were created for International Confer-
ence on Document Analysis and Recognition (ICDAR) competition. Sets ICDAR03,
ICDAR13 and ICDAR15 were used in competitions in years 2003, 2013 and 2015,
respectively. First two ICDAR datasets include only horizontal text, text of various
orientation appears in set from 2015 [26]. Another widely used dataset is The Street
View Text (SVT) which contains images with text harvested from Google Street
View [32]. SVT and most other scene text datasets offers mainly frontal text with
minimal perspective distortion. However, perspective text is frequent in real life
applications of OCR for example previously mentioned street photographs, where
it is impossible to capture every visible text from frontal view. Thus Phan et. al
[25] created a new StreetViewText-Perspective derived from SVT, it shows the same
places as SVT but from different perspective. Another dataset CUT80 focuses on
curved text as well as CTW1500 dataset. For text recognition there exist for ex-
ample IIIT5k dataset containing 5000 cropped images harvested from Google image
search. It combines both scene text images and born-digital images [14]. One of
the most widely used dataset is COCO-Text which includes over 60,000 images with
almost 250,000 word instances [7].

Datasets that were used for comparison of detection and recognition methods,
namely, SCUT-CTW1500 dataset, Kaist Scene Text Database, Born-Digital Images
and the historical poster dataset are described in more detail in Chapter 4.
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1.4 Evaluation

Text Detection

A detection model tries to detect a text regions as precise as possible. It predicts a
bounding box around the text and return its coordinates. As said earlier it can be
an irregular polygon or a rectangle.

For measuring the performance of a detection model in general object detection a
intersection over union (IoU) is used and it can be evenly applied on text detection.
The principle is to compute the intersection of a ground truth bounding box and
predicted bounding box and divide it by union of those two areas.[28]

Figure 1.2: IoU formula with a bounding box visual interpretation.

Text Recognition

To test how much is the recognition model successful various evaluation metrics
were created. The simplest that comes to a mind is compare the word in the image
with the predicted one. We can either compare words strictly and as correct classify
only when all characters match and even a small mistake makes the prediction false,
or we can use the metric called word error rate (WER). Before we define how it is
computed, we must introduce three types of error that are taken into account:

• substitutions: words with one or more misspelled characters,

• insertions: words that were added (do not appear in original text),

• deletions: missing words.

WER is then defined as follows.

WER = (iw + sw + dw)
nw

, (1.1)

where iw is the number of inserted words, sw is the number of altered words, dw is
the number of lost words and nw is the number of all words in a ground truth text.
The chosen value of WER is the one where the sum in numerator is minimal.[5]

This approach is straightforward and it is a useful for long text, for example
scanned books or documents. However, used on scene text or generally images
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with sparse text that does not contain sentences, it has some drawbacks. Scene
text images do not have a long contextual information, there are words that belong
together (such as names of countries) but mostly there are street signs, telephone
numbers, names of people or companies that do not occur in lexicon. In these cases
it is often that the recognizer makes mistake in just one character, that can be
barely legible due to an extravagant font or lighting conditions or other distortions.
Therefore, it is better to focus on characters and validate each letter in a word
separately. For this purpose is used, similar to word error rate, a character error
rate (CER). There are again three possible error types – substitution, insertion and
deletion of a character in a word.

The formula for CER computations is also analogous

CER = (i+ s+ d)
n

, (1.2)

where i is the number of inserted characters, s is the number of substituted
characters, d is the number of deleted characters and n is the number of all characters
in a ground truth word.[5]

The sum of the three error operations is called a Levenshtein distance. Let s be
the ground truth (source) string and t the predicted (target) string. The steps of
the algorithm are [12]:

1. Let n be the length of s and m the length of t. Construct an empty matrix d
with 0, . . . , n columns and 0, . . . ,m rows.

2. Initialize the first row to 0, . . . , n and first column to 0, . . . ,m.

3. Go through s (i = 1, . . . , n) and t(j = 1, . . . ,m).

• Compare s[i] and t[j]:
if it equals, set cost = 0,
if it does not, set cost = 1.

• Set d[i, j] equal to the minimum value of:
d[i− 1, j] + 1 (deletion),
d[i, j − 1] + 1 (insertion),
d[i− 1, j − 1] + cost (substitution).

4. Repeat step 3 until d[m,n] value is computed. That is the Levenshtein dis-
tance.

It is clear that the number of mistakes can exceed the length of the source
word, which leads to error rate larger than one hundred percent. For this purpose
sometimes normalized CER is used. To obtain it the sum of errors is divided not by
the number of characters in the source word but by the sum (i+s+d+c), where i, s, d
are the error operations and c is the number of correct characters the predicted word
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and can be computed as c = n− d− s. This way the denominator is always larger
than the numerator (or equal). After modifications we get the following formula:

CER = i+ s+ d

n+ i
= Levenshtein distance

n+ i
. (1.3)
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Chapter 2

Neural Networks

A perceptron unit is able to find a linear boundary between two separable classes. In
n-dimensional space we talk about a separating hyperplane. The following equation

w>x+ wn+1 = 0 (2.1)

is a vector form of the hyperplane equation, where w is a weight, n-dimensional
column vector, x is also n-dimensional vector and it contains the coordinates of a
point, which is being classified, wn+1 is a bias. We can simplify the notation by cre-
ating a n+1 -dimensional vectors: x = [x1, . . . , xn, 1]> and w = [w1, . . . , wn, wn+1]>.
We want to find a weight coefficients that satisfies the following property:

w>x > 0 x ∈ class1 (2.2)

w>x < 0 x ∈ class2 (2.3)

Then the perceptron learning algortihm can be described as follows:

For any x(k), at step k:

1. If x(k) ∈ class1 and w>x ≤ 0 , let

w(k + 1) = w(k) + αx(k) (2.4)

2. If x(k) ∈ class2 and w>x ≥ 0 , let

w(k + 1) = w(k)− αx(k) (2.5)

3. Otherwise, let
w(k + 1) = w(k) (2.6)

where w(1) is arbitrary and α > 0 is a constant called learning rate. Sum of the
products, ∑n

k=1 wkx+wn+1 is then passed through an activation function. In case of
perceptron it is a threshold function returning either 1, when x belongs to class1,
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Figure 2.1: Model of a perceptron unit (a), model of an artificial neuron (b) with
used operations. The letter h denotes an activation function, l denotes a particular
layer in a multilayer network. The element on the right is sometimes called a sigmoid
neuron.[11]

or -1 when it belongs to the second class class2. In Figure 2.1.a. is shown a model
of a perceptron.[26]

Linearly separable data are rather rare in real life problems. One possibilities
is to use more perceptron units, however, the solution comes with neural networks
and computing elements called artificial neurons. These elements are similar to per-
ceptrons as they perform the same computations, but have a different attitude to
processing the results. Schematics of a perceptron unit and an artificial neuron can
be comapred in figure 2.1. The perceptron activation function is very insensitive to
small signals which can lead to false results. If the activation function is changed
from a hard threshold to smooth function, results are then handled more carefully.
There are few commonly used smooth activation functions, such as sigmoid, hyper-
bolic tangent or ReLu (rectifier linear unit) function. In Figure 2.2 are the equations
and shapes of the mentioned functions.[11]

Figure 2.2: Commonly used activation functions in neural networks.[13, altered]
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A generic neural network is depicted in Figure 2.3. By layer we understand a
group of neurons, usually symbolized in a column. First layer contains the input
vector x, then every other layer contains the activation values of neurons in this
layer. The conntecting lines between each two neurons signifies a fully connected
neural network, where output of every neuron from one layer is used as input for
neurons in the following layer. Values of initial layer are known and also are the
last output values, all neurons (and layers) between first and last layer are therefore
called hidden. When there are more then one hidden layer we talk about deep neural
network. Usually the number of output neurons is equal to the number of observed
classes. For the rest of this chapter we will assume that there are no loops in the
network.[11]

Figure 2.3: Fully connected neural network with processes.[1]

A forward pass through neural network maps the values of vector x (the input
layer) to the output layer, thus to determine the class of the vector x. Steps of a
forward pass can be written in matrix notation. This aproach is good for computing
simultaneously with multiple input vectors and all neurons in one layer. The forward
pass can be described in three steps:

1. Input
A(1) = X (2.7)

2. Feedforward step

For l = 2, . . . , L Z(l) = W (l)A(l − 1) +B(l), A(l) = h(Z(l)) (2.8)

3. Output
A(L) = h(Z(L)) (2.9)

Matrix W (l) contains all weight vectors of all nodes in one layer l, X contains
input vectors, A(l) contains output values from layer l, B is the matrix of biases,
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Z(l) contains the net inputs to neurons in layer l, h is an activation function. This
process of predicting works when we know the right values of weights and biases.
These can be obtained by training a neural network via backpropagation.[11]

During training of neural network we work with data where it is known for each
sample to which class it belongs. This means that we know the values of all otuput
neurons in the net. However, we do not know the values of outputs of hidden
neurons. A process called backpropagation is used to obtain information about
hidden neurons. It can be devided into four steps. These steps are repeated until
the value of cost function is reduced to a desired level. One repetition is called an
epoch, thus the number of iterations is the number of epochs used for training the
network.[11]

1. Input of data from training set.

A(1) = X (2.10)

2. A forward pass to classify the data into class and determine the error of
misidentified classes (sometimes this error function is called cost function)
based on ground thruth from the training data.

For l = 2, . . . , L Z(l) = W (l)A(l − 1) +B(l),
A(l) = h(Z(l)),
D(L) = (A(L)−R)� h′(Z(L))

(2.11)

3. A backward pass that sends the output error back through the network, where
changes to update neuron paramters are computed.

For l = L− 1, L− 2, . . . , 2 D(l) = (W>(l+ 1)D(l+ 1)� h′(Z(l)) (2.12)

4. An update of weights and biases of neurons.

For l = 2, . . . , L W (l) = W (l)− αD(l)Atop(l − 1),

b(l) = b(l)− α
np∑

k=1
δk(l),

D(L) = (A(L)−R)� h′(Z(L)),
B(l) consist of horizontally stacked vectors b(l)
for np times,
δk(l) are the columns of matrix D(l),

(2.13)

whereW (l) is the matrix of weights of all nodes in one layer l for the inputs fromX,
which contains multiple input vectors, A(l) contains output activation values from
layer l, B are the biases, Z(l) contains the net inputs to neurons in layer l, δ(l) tells
us the rate of error change with respect to a change in the net input to any neuron
in the network δk(l) =, α is the learning rate used in training, h is an activation
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function. W (1) and B(1) are set as random small numbers when initializing the
process.[11]

The error function for all output neurons for a single input x is defined as

E =
nL∑
j=1

Ej = 1
2

nL∑
j=1

(rj − aj(L)) = 1
2 ||r − a(L)||2 (2.14)

where r is a desired response for a given input x, a(L) is the output of last layer
in the network, in the last term is used the notation of the Euclidan vector norm.
The error for all input vectors1 is equal to the sum of the individual errors.[11]

2.1 Convolutional Neural Networks

The procedures described in the previous part dealt only with the case where the
input data are in the form of a vector. In optical character recognition we work
with image data that are not primarily represented as vector but as a matrix of
pixel values. The matrix can be linearized from 2D to 1D when indeces are mapped
gradually. However, this approach does not consider spatial relationships that may
be present among specific pixels. For examples edge or color similarities which
are significant in text detection. Convolutional neural network (CNN) accepts 2D
matrix as input and extracts features from the given image, these features are then
fed to a classic fully connected neural network. A diagram describing a simple CNN
is in Figure 2.4. We will discuss individual steps visible in this figure below.[11]

Figure 2.4: A simple CNN with LeNet architecture.[11, altered]

First, a region of of pixels of the input image, a receptive field, is selected. This
field is moved over the image with a certain step. At each position a convolution is
performed and values are stored in a 2D matrix. The size of the step determines the
size of the resulting matrix (for example step of size two reduces the resolution of the
image by one half). A mathematical definition of convolution operation is written
in Definition 1. To each value obtained by convolution a bias is added and then

1a total network output error
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is passed through an activation function. The new matrix thus obtained is called
feature map. A single feature map is generated with same weights in convolution
kernel and same bias, because this way a same feature is detected through the image.
For another feature map different weight and bias is used. A group of feature maps
in a CNN are called a convolutional layer. After the convolution step pooling is
performed (sometimes called subsampling).[11]

Definition 1 Let f(x, y) be in image and w a kernel of size m × n. Convolution
with kernel w is denoted as (w ? f) and defined as

(w ? f)(x, y) =
k∑

u=−k

l∑
v=−l

w(u, v)f(x− u, y − v). (2.15)

Pooling is responsible for reduction of output dimension and causes a transla-
tional invariance. It is done by dividing a feature map into 2 × 2 adjacent (non-
overlapping) regions, the four values in this region are replaced by only one value.
Common pooling methods are: average pooling, the values in region are replaced by
the average of the values; max pooling, the values are replaced by the maximal value
from the region; L2 pooling, the final value is obtained by computing the Euclidan
norm of the four values. We obtain one matrix for each feature map from the con-
volution step. The bunch of matrices from the pooling step is called a pooling layer.
The result of the last pooling layer is vectorized and sent to the fully connected
neural network. The training procedure of the CNN is analogical to the training of
a fully connected neural network. However, convolution is used instead of matrix
multiplication and the output from fully connected network has to be converted into
2D matrix.[11]

VGG16 is an example of a CNN used in OCR. The basic configuration consists
of 16 weight layers and uses a 3 × 3 receptive field for convolution. The output
dimension is reduced by max pooling.[35]

2.2 Recurrent Neural Networks

Recurrent neural networks (RNN) same as feedforward networks has an input, hid-
den and output layer. Unlike the classic networks RNNs share parameters (weights
and biases) across each layer of the network and they remember results of compu-
tations. This approach is very useful in contextual tasks such as language problems
(speech and written text recognition) where the position of a word in a sentence and
surrounding words can help predict text.

During training of RNN errors from output to input layer are calculated but
unlike in standard backpropagation the errors are summed up because of the shared
parameters. This process makes RNNs prone to two problems called exploding and
vanishing gradients. The former one happens when gradients are large and by sum-
ming they enlarge too much to be represented as undefined (NaN) value, which leads
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to instability of the model. The latter refers to the case when gradients are contrarily
too small, they continue to decrease and the weights become insignificant.[9]

Long short-term memory

Long short-term memory (LSTM) is a type of RNN. It contains so-called memory
blocks, which are memory blocks (cells) located in the hidden recurrent layer. Each
memory block contains three gates – input, output and forget gate. The input
one controls the flow of information in to the cell. The output gate controls what
information is to be passed to the rest of the network. The forget gate was added
later and it manages the amount of information stored in cell before new information
is received. Generally the cell input and cell output activation functions is tanh and
the network activation function is softmax. A scheme of LSTM is in Figure 2.5.[29]

LSTM network has some variations. It is possible to stack LSTM layers on top
of each other between the input and output layer and create a deep LSTM. Another
type is a bidirectional LSTM (BLSTM) which differs from normal LSTM that it
remembers not only information from the past but also from the future (e. g. when
the model wants to predict a word in a sentence, it knows all the words behind the
currently predicted word and also all the following words). It enables better usage
of contextual information which is crucial in language processing.[29, 39]

Figure 2.5: Scheme of a LSTM recurrent neural network.[39]

2.3 Convolutional Recurrent Neural Networks

Convolutional recurrent neural network is a type of a neural network designed for
the purposes of image object recognition. It was introduced by Shi and al. [30] in
the year 2015. It combines the advantages of a deep CNN and RNN. It reads directly
features from image data without prior feature extraction or image preprocessing
such as binarization as CNN does. It produces a sequence of labels as RNN. Further
it has no restriction on the length of an object (texts are rather long and flat), it
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can learn from words so there is no need to segment text to individual characters.
CRNN also has a smaller amount of parameters than a deep CNN thus it requires
less storage space.[30]

Figure 2.6: An architecture of CRNN for recognizing objects in images.[30]

First CNN with max pooling extracts features directly from the image input. The
convolutional layers are followed by recurrent ones, which take the frame output of
CNN and predict labels for each frame, then a transcription layer translates the
segmented labels into a continuous text. This architecture is visible in Figure 2.6.

The images, that are to be recognized, are scaled to the same height and then
feature map is obtained by CNN. Feature vectors are extracted from each column
of the feature map, so a vector covers a rectangle area of the input image. This are
is called a receptive field. CRNN uses then a deep bidirectional LSTM network to
predict labels. During transcription the model picks the label of a frame which has
the highest probability. This can be made either with a help of a lexicon or without
it.[30]
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Chapter 3

OCR tools

OCR software can be divided in four main types by its functionality - text detector,
text recognizer and full OCR engine. The last one can either be an end-to-end
system, which does both detection and recognition together which means that these
two processes influence each other, or a tool that combines a separate detector and
recognizer. For an end user who needs to convert text from an image into a computer
readable format. The supply of such tools is wide, ranging from open source libraries
for various programming languages to commercial softwares with modern GUI. New
methods are still being developed as there is always space for improvement. New
methods can come from commercial background or are developed for international
OCR competitions. In the next sections a selection of the free available tools is
described.

3.1 CRAFT

Character Region Awareness for Text Detection (CRAFT) is framework for scene
text detection introduced by Clova AI research group. It uses a Convolutional
Neural Network. It performs well also on curved or differently deformed texts.
Its methodology is to localize individual characters then characters belonging to
the same word (based on distance) can be connected into word box or polygon.
After that bounding box is created around it and output contains the rectangle
coordinates.[4]

CRAFT uses a fully convolutional neural network based on VGG-16.The network
returns two values – an affinity and region score. ”The region score represents the
probability that the given pixel is the center of the character and the affinity score
represents the center probability of the space between adjacent characters” [4, page
3]. Because CRAFT detect individual characters it was necessary for the authors to
create ground truth with bounding boxes for each character. Both scores, thus the
probabilities they represent, are encoded with a Gaussian heatmap which is often
used were ground truth regions are not strictly bounded. The model was trained on
a synthetic dataset SynthText for 50k iterations, further weakly-supervised training
was performed on ICDAR datasets.[4]
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This method has similarly successful performance as other state-of-the-art meth-
ods and in last years it is often used as a detection tool in systems that recognize
text from unsegmented images. There exists an official Pytorch implementation of
CRAFT for python which can be cloned from Clova AI GitHub repository1, however
it is not a python package. A package for python of CRAFT detector exists under
the name craft-text-detector.

3.2 Tesseract

Tesseract is an open source text recognition engine. It supports over 160 languages
can be trained to recognize new ones. Originally Tesseract was created by Hewlett-
Packard in late 1980s, from 2006 it is developed and maintained by Google. As it
does not have a built-in GUI direct use is via command line. However, there exist
a significant number of GUIs for Linux, Windows, Mac for computer usage and
also for Android and iOS to use on mobile phones and few online OCR services.
Another way how to use the engine is via libraries for computer languages, namely
for example they exist for Java called tess4j, python called pytesseract, R, Ruby and
others. [34]

Tesseract is mainly used as tool for recognizing documents (with both computer
font text or hadwritten text). Best results are obtained on preprocessed images. The
preprocessing includes noise reduction, horizontal alignment of text, elimination of
dark borders around text region, conversion to binary black and white picture and
other adjustments depending on the nature of the picture. The ideal image for
Tesseract is a legible, typed, black text on plain white. Thus when used on scene
text images it gives generally worse results than other OCR softwares.

Computations with Tesseract are supported for GPU and also CPU. Since version
4, that was announced in 2018, Tesseract uses for recognition Long Short Term
Memory (LSTM) model (kind of RNN). A simple pipeline of Tesseract is in Figure
3.1. First a binary image is created from the input one, then characters are found
with the connected components algorithm. Joined characters are then chopped and
broken ones are connected, now each character should be separate. Then characters
are recognized and further joined into words. The words are verified in a lexicon
and a word with the smallest distance is selected.[31]

By default Tesseract expects a page of text – black letters on white background
grouped in horizontal lines, where font type and font size vary only slightly. To
deal with differently distributed text over an image Tesseract provides thirteen page
segmentation models (PSM). When selecting the right model Tesseract performance
can increase from zero up to almost perfect results. Description of all the PSMs can
be find directly via Tesseract help command in console application. Thanks to the
various PSM Tesseract works also as a detection tool but often happens that during
a search for text in scene images it mistakes objects and structers for text. Such
example can be seen in Figure 3.2. Besides the PSM parameter user can set also

1https://github.com/clovaai/CRAFT-pytorch
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Figure 3.1: Pipeline architecture of Tesseract OCR engine. [10]

OCR engine modes (OEM). There are four settings differing in whether a LSTM
network should be used.

Figure 3.2: Tesseract mistakes background texture for text. Red rectangles and
characters denotes predicted words. Part of an preprocessed image from CTW1500
dataset.

3.3 EasyOCR

EasyOCR is a product of Jaded AI for both image text detection and recognition.
it supports over 80 languages and various scripts such as Latin, Chinese, Arabic etc.
The company offers software with web interface for free and also prepaid version
which enables usage of a new model for custom data. However, in addition to the
web interface, the company also created a python package under the same name.[2]

The product is still in development and aims for wider functionality. A future
idea of EasyOCR package is to provide an easy-to-use tool where one can plug-
in already created state-of-the-art models and use them for annotating. Pipeline
of EasyOCR behavior is shown in the image 3.3. As it can be seen in this image,
default detection model is CRAFT and for recognition is used CRNN (Convolutional
Recurrent Neural Network)2. The implementation of this network is composed of
following components: feature extraction (Resnet is used) and VGG (Convolutional
Neural Network), sequence labeling (BLSTM is used) and decoding (CTC is used).[3]

2The description of this network is in Chapter 2.3.
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EasyOCR package by default computes annotation on GPU, however there is a
possibility for CPU computations (provided that the selected model supports it).

Figure 3.3: Diagram of EasyOCR pipeline. Grey slots are placeholders for models.
The mentioned models are the ones used as default. [3]

3.4 Keras-ocr

Keras-ocr is a python library used for detecting and recognizing text in images
created by Fausto Morales. It works with variety of languages and with different
writing scripts. It allows computing on CPU as well as on GPU. It unites the
CRAFT text detection model and an implementation in Keras python library of
CRNN for recognizing text, worth mentioning this is a different implementation of
CRNN than in EasyOCR.[17]

On the official website3 of the package there is a comparison of this method
with two other OCR APIs – Google Cloud Vision and AWS Rekognition. Their
performance was tested on 1,000 images from the COCO-Text validation set us-
ing a basic pretrained model of each method. None of the investigated methods
performed poorly; however, AWS Rekognition had the worst precision and recall re-
sults. Google’s method and keras-ocr has similar results. It is important to mention
that no tuning parameters were used in any of these methods. Another candidate
for comparison was Tesseract but it performed on very badly on given data, most
likely due to the fact that Tesseract is suitable for scanned documents rather than
for photos of real life scenery and objects with text. [17]

CRAFT already provides a pretrained model which can be used directly without
modification for text detection or it is used as initial model for training a new model
on new data. This model was trained on three datasets (SynthText, IC13, IC17) and
supports English and multi language text detection.[27] Similarly for recognition,
CRNN also has a pretrained model. This model was trained on the synthetic word
dataset which consists of 9 million images with vocabulary of 90K English words.[?]
To use these models in the keras-ocr library one either doesn’t specify anything and
use the defaults, or pass the value clovaai-general for the CRAFT pretrained
model or kurapan for the CRNN model.

3https://pypi.org/project/keras-ocr/
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Keras-ocr offers preprocessing for four public datasets though any text image
dataset can be examined using this tool. These four datasets are: BornDigital
dataset, COCO-Text dataset, ICDAR 2013 dataset, ICDAR 2019 dataset (only
Latin-only scripts).[16]
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Chapter 4

Experiments

This section is divided into two main section – one describes used datasets in the
experiments, the other provides an implementation of functions I have written for
the testing.

4.1 Datasets

SCUT-CTW1500 Dataset

SCUT-CTW1500 dataset contains exactly 1500 images of real-world, scene text in
English language. Sample images can be seen in Figure 4.1. The key feature of
this dataset is that each image contains horizontally aligned text, multioriented text
and curved text. There are cases where the curvature is only slight and cases where
text forms a circle with letter upside down. Recognizing multi-oriented and curved
text is more of a challenge than pure horizontal text. This dataset is split to train
and test data. Two thirds of dataset thus one thousand images for training and five
hundred for testing. According to the description of this dataset on relevant GitHub
repository dataset was manually labeled and lately corrected, therefore labels seem
to be very accurate. However for example ground truth for image 1313.jpg misses
all occurences of letter I, as the depicted font was probably misread.[37, 22]

The ground truth for train data are in XML format and each file carries infor-
mation about the file name of respective image file, text information – i.e., words in
a text line, 14 coordinates of a bounding polygon and coordinates, height and width
of a circumscribed rectangle. Later the authors added coordinates of center point of
each English letter to be used as detection ground truth. The ground truth of test
data is in simple text file (TXT) and contains only 14 coordinates of the bounding
polygon and a text which is within that region. There is a minor issue with labels
that it usually contains a full text line with multiple words and coordinates are not
assigned to individual words but to text region as whole. Most end-to-end system
detect words rather than groups of corresponding words. This fact needs to be taken
into account when evaluating results.
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Figure 4.1: Sample images of SCUT-CTW1500 dataset.

KAIST Scene Text Database

This dataset contains 3000 images of photographed text. It can be divided into three
major categories – text of Korean language, English language and mixed languages.
As I concentrate on text in latin script in this paper further information relates to
the English language dataset. The number of images is then reduced to less than
four hundred images. Figure 4.2 shows few samples of this dataset. Photographed
objects are mostly shop banners or parts of magazine front pages. Photographs were
either taken by a high-resolution digital camera or a low-resolution mobile phone
camera.[15] Each photography has a ground truth description and a bitmap image.
In the bitmap file only text is highlighted (by white or red color) and everything
else apart from text is set as black. Ground truth files are in XML format and
includes a name of an image, its resolution and bounding box for each word and
also a bounding box for each letter of the word.

To use this dataset for testing and training the XML ground truth needed to be
converted to string and int values. I wrote a parser, that combines letters to form
a word that is within a given bounding box. I changed the notation of bounding
boxes from one coordinate, width and height attributes to two top left and bottom
right coordinates. The name of the parsing function is read gt kaist.

Unfortunately this dataset has few errors in filenames of corresponding files or
in the content of XML files. Usually these are only typos, however they prevent
automatic preprocessing of dataset. Due to this problem these mistakes need to
be found and manually corrected. Also there is a small number of ground truth
XML file with fully missing data. Despite these shortcomings this dataset is useful
because of the bitmap files. This allows to compare results of both images affected
by shooting conditions and images dependent only on font and position.
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Figure 4.2: Sample images of KAIST Scene Text Database dataset.

Born-Digital Images

Born-Digital Images contains data of images with text that can be found on var-
ious websites. Samples of this dataset can be found is in Figure 4.3. There are
mostly advertisements, company logos or website headers. Such pictures cannot be
classified neither as real scene dataset, neither as synthetic one. On one hand this
dataset shares with scene datasets the variability in font styles and sizes, different
text orientations and complex colour placement. On the other hand it differs in size
because low resolution is significant in smooth and fast loading on websites. Also
no noise is present due to lighting conditions. Geometrical deformations that result
when capturing a real scene with camera also do not appear here. However com-
pression to lower resolution can lead to artifacts and aliasing. In general we can say
that letters are more clearly visible than in photographed text as easy readability is
crucial in successful advertising.[8]

The dataset is available for download from the website of Robust Reading Com-
petition. First version was published in 2011 and revised two years later, it contains
separate dataset for text localization, segmentation and then for word recognition.
In 2015 they published an end-to-end dataset with ground truth for all tasks. The
dataset is split in training and testing data. However, ground truth for testing data
contains only a possible vocabulary of words in images and no coordinates. This
might be due to the fact that the competition might be still ongoing or there was
not a sufficient demand for complete ground truth. As for training data, each image
has a corresponding TXT file with coordinates of four vertices of bounding rectan-
gle and a word. Text lines are separated and the text within rectangle is always
one word. Extracting ground truth is done in the function read gt bd and unlike
preceding datasets there was no parsing needed, only read the desired values from
a file. Unfortunately, there are quite a few missing words, usually words that have
two or less characters. This can affect the evaluation when the model finds such a
short, missing word.[8]
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Figure 4.3: Sample images of Born-Digital Images dataset.

Vienna City Poster Dataset

The Vienna City Library possesses a collection of 350,000 poster images. A sample
of the collection was provided by the organization to the Technical University of
Vienna for research purposes. It consists of 5050 images. From these images we
manually labeled 257 images and created a testing dataset. Sample of the dataset
is in Figure 4.4. As it can be seen from the example images, the dataset includes
mainly posters with German language, though few images have words in English or
Czech.

The posters have neither the characteristic of a scanned text documents, neither
of scene images. They are most similar to born digital images. However for the
posters is typical one thing – a part of the text is large relative to the image size and
another part is tiny. The huge text is usually a brand or product name or a name
of an event. The small text is the name of the author of the poster or the printer
where the posters was printed. Both of these texts are a challenge for an OCR
engine, because large letters are misinterpreted as objects and the height of the tiny
ones is not bigger then twenty pixels and letters are often blurred. Middle-sized text
also appears in the posters and is generally well recognized.

Due to the presence of the small text. All images in the dataset need to be in
the original resolution. The bigger side is always 4096 pixels. This leads to a large
dataset even when the number of images is less then three hundred. A single JPG
image has approximately 4 Megabytes. A PNG image in the dataset has about 20
Megabytes. To reduce the final size of the dataset I decided to convert the PNG
files to JPG1. The final dataset of JPG images is 1.1 GB large, before it was 2.8 GB.

1For converting the images I used the console application ImageMagick, with the command
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Figure 4.4: Sample images of Vienna City Poster Dataset.

The high resolution of images makes demands on the hardware when working with
the dataset and makes it impossible to run on machines with insufficiently large
computing memory.

The annotation tool used for labeling the selected posters is called Aletheia from
the PRiMA Research2. The program can be downloaded for Windows operating
system, it offers both Lite and Pro version. A free one month trial is offered or for
academic use the PRiMA Research gives an extended license. Using this tool we
labeled every separate word or group of letters (such as poster identification number)
found in an image on the selected posters. Words that were forming a text line, were
afterwards labeled as a text line (single word is a text line consisting of one word).
Individual characters were not labeled. Bounding boxes for both words and text
lines are rectangles, even for curved text. Word bounding boxes were drawn pixel
precise with the intention of no margin between the box and the word. Aletheia
software produces a XML file with PRiMA Research tags, example for the image
P-2151.jpg is in the code below and in Figure 4.5 is a graphical representation of
this XML file.

1 <?xml version ="1.0" encoding ="UTF -8"?>
2 <PcGts xmlns="http :// schema . primaresearch .org/PAGE/gts/ pagecontent

/2019 -07 -15" xmlns:xsi="http :// www.w3.org /2001/ XMLSchema -
instance " xsi: schemaLocation ="http :// schema . primaresearch .org/
PAGE/gts/ pagecontent /2019 -07 -15 http :// schema . primaresearch .org/
PAGE/gts/ pagecontent /2019 -07 -15/ pagecontent .xsd">

3 <Creator ></ Creator >
4 <Created >2022 -03 -14 T11 :42:27 </ Created >
5 <LastChange >2022 -03 -14 T11 :42:27 </ LastChange ></ Metadata >
6 <Page imageFilename ="P -2151. jpg" imageWidth ="2524" imageHeight ="

4096">
7 <TextRegion id=" tempReg357564684568544579089 ">

for f in *.png ; do convert "$f" "../alljpg/${f%.*}.jpg" ; done.
2More information available at https://www.primaresearch.org/tools/Aletheia
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8 <Coords points ="0,0 1,0 1,1 0,1"/>
9 <TextLine id="l4">

10 <Coords points ="264 ,2496 264 ,2810 2301 ,2810 2301 ,2496"/>
11 <Word id="w10">
12 <Coords points ="264 ,2496 264 ,2810 2301 ,2810 2301 ,2496"/>
13 <TextEquiv >
14 <Unicode >GENERATION </ Unicode ></ TextEquiv ></Word >
15 <TextEquiv >
16 <Unicode >GENERATION </ Unicode ></ TextEquiv ></ TextLine >
17 ...

Figure 4.5: Image P-2151.jpg in the labeling software Aletheia. Green boxes sour-
rounds ground truth text lines.

4.2 Implementation

In this section I briefly described the structure of the experiment scripts and the
function used inside them.

I wrote all testing scripts and auxiliary functions in Python programming lan-
guage. The scripts were written as Jupyter Notebook environment and saved in the
corresponding file format .ipynb, lately these notebooks were saved as .py Python
scripts. The set of utility functions is located in a file called utils.py. All experi-
ments were run within Google Colaboratory3 which provides a 12 GB RAM and a

3Google Colaboratory (Colab for short) is an product from Google Research. It allow Google
users to write and execute python code within a web browser using a remote computer and its
computing power. In the free version of Colab the computational resources are limited and vary over
time due to the demands of other users. The product is available at https://colab.research.
google.com/.
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GPU Nvidia K80 with 12 GB memory.

In the experiments I have chosen three methods to be tested, namely, Tesseract,
EasyOCR and keras-ocr. Each of them has corresponding Python package. For
Tesseract I tried two approaches, one with pure Tesseract and another with CRAFT
detection tool followed by Tesseract recognizer.

4.2.1 Script Description

There are four scripts for the tested methods. Each script begins with downloading
required packages, that are not already installed in Google Colab environment.
This is followed by importing packages to the environment. Then Google Drive is
mounted, because that is where image datasets are stored and where is located a
file with utility functions. After that the utility functions can be imported, too.

The next stage is dataset loading. Each dataset is loading separately because
tests are performed gradually for each dataset within each method. Images and
respective ground truths are loaded and saved in variables. The list of image and
text data are sorted so that corresponding data have the same indices.

Another step is the prediction. During this phase models are loaded and detec-
tion and recognition parameters specified.

Then metrics are computed. First the predictions are arranged into a same
format. Then intersection over union metric for bounding boxes is computed and
character error rate for comparing predicted and original texts. Averages of these
metrics throughout an image are made for each image and these results are saved.
Optionally one can save an image with the original image and bounding boxes and
annotations drawn over it.

The pipeline can be summarized in a set of steps.

1. Installation of packages that are not in the default Google Colab setting.

2. Importing dependencies for the project including custom utility functions from
utils.py.

3. Google Drive of the user that runs Google Colab is mounted. (Authentication
is needed)

4. Image files and ground truth files are loaded. Ground truth is converted from
files to tuple of string and integer coordinates.

5. If desired a short preprocessing of images is done (grayscale, Otsu threshold-
ing).

6. Setup of parameters for OCR.

7. Model loading.

8. Prediction.
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9. Conversion of prediction to a unified format (List of tuples of string and integer
coordinates for each image, then joined to a list, which contains prediction for
all images.)

10. Computation of evaluation metrics IoU an CER.

11. Saving and visualizing results.

4.2.2 Function Description

In the rest of this chapter the description of testing Python scripts is provided as well
as comment on functions used in testing scripts. Note that int he following function
definitions respective docstrings are omitted as they provide similar information as
the descriptions, but in a briefer version.

Functions for Extracting Ground Truth

I created the following functions in order to extract ground truth information from
text files – in most cases XML files. Each dataset unfortunately uses a different
form of annotations. The styles differ in order of data, tag names, even in type
of the recorded data (sometimes individual characters and their position is written
or information about curvature). For XML parsing I utilized the The ElementTree
XML API, which is imported as xml.etree.ElementTree. Information in XML files
is stored in a tree where individual values can be accessed gradually using tags and
their attributes.

All functions return annotations in the following format :
(label, [[top left X, top left Y], [bottom right X, bottom right Y]]),
a tuple of label and bounding rectangle coordinates in an array. If the images in
the dataset were scaled then coordinates in annotations need to be scaled with same
ratio. This ratio can be passed as a function argument and is default to one.

Function 4.1: read gt ctw test
1 def read_gt_ctw_test (data , scaling_ratio =1):
2 # one line = one bounding polygon : list of coordinates , each

separated by commas , last is the text inside
3 # there are #### before each text , two additional ## no text

recognized
4

5 annotations = []
6 with open(data , "r") as file:
7 for line in file:
8 line = line. rstrip (’\n’)
9 text = line.split("####")

10 label = text [-1]
11 coordinates = text [0]. split(",")[: -1]
12 c = [int(i) for i in coordinates ]
13 minX = min(c [::2]) * scaling_ratio
14 maxX = max(c [::2]) * scaling_ratio
15 minY = min(c [1::2]) * scaling_ratio
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16 maxY = max(c [1::2]) * scaling_ratio
17

18 bbox_coords = np.array( [[minX , minY], [maxX , maxY ]] )
19 annotations . append (( label , bbox_coords ))
20

21 return annotations

The function read gt ctw test reads TXT files that contains the annotations
for testing part of the SCUT-CTW1500 dataset.

Function 4.2: read gt ctw train
1 def read_gt_ctw_train (xml_file , scaling_ratio =1):
2 gt = []
3

4 tree = ET.parse( xml_file )
5 root = tree. getroot ()
6

7 # get values in this order: height , left coordinate , top
coordinate , width

8 for i, bbox in enumerate (root [0]. findall (’box ’)):
9 # create list of integers with bounding box values , sort by

attribute name
10 # in case in different document there is a different order

of attributes
11 bbox_integer = [int(val) for key , val in sorted (bbox. attrib

.items (), key = lambda el: el [0])]
12

13 # calculate bottom coordinate of bounding rectangle x+width
, y+ height

14 x_right = int (( bbox_integer [1] + bbox_integer [3]) *
scaling_ratio )

15 y_bottom = int (( bbox_integer [2] + bbox_integer [0]) *
scaling_ratio )

16 x_left = int( bbox_integer [1] * scaling_ratio )
17 y_top = int( bbox_integer [2] * scaling_ratio )
18

19 bbox_coords = np.array ([[ x_left , y_top], [x_right , y_bottom
]])

20

21 # get label
22 label = root [0][i]. find(’label ’).text
23

24 # create list of labels and corresponding bounding boxes
25 gt. append (( label , bbox_coords ))
26

27 return gt

The function read gt ctw train reads the annotations from XML files for train-
ing part of the SCUT-CTW1500 dataset.

Function 4.3: read gt kaist
1 def read_gt_kaist (xml_file , scaling_ratio =1):
2 gt = []
3

4 tree = ET.parse( xml_file )
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5 root = tree. getroot ()
6

7 # some files has images as root tag ,
8 # some image as root tag (one tree layer (tag images ) is

missing )
9 try:

10 image_tag = root [0][2]
11 except IndexError :
12 image_tag = root [2]
13

14 # get values in this order: height , width , x (left) coordinate ,
y (top) coordinate

15 for i, bbox in enumerate ( image_tag . findall (’word ’)):
16 # create list of integers with bounding box values , sort by

attribute name
17 # in case in different document there is a different order

of attributes
18 bbox_integer = [int(val) for key , val in sorted (bbox. attrib

.items (), key = lambda el: el [0])]
19

20 # calculate bottom coordinate of bounding rectangle x+width
, y+ height

21 x_right = int (( bbox_integer [2] + bbox_integer [1]) *
scaling_ratio )

22 y_bottom = int (( bbox_integer [3] + bbox_integer [0]) *
scaling_ratio )

23 x_left = int( bbox_integer [2] * scaling_ratio )
24 y_top = int( bbox_integer [3] * scaling_ratio )
25

26 bbox_coords = np.array ([[ x_left , y_top], [x_right , y_bottom
]])

27

28 # get label
29 label = ""
30 for char in image_tag [i]. findall (’character ’):
31 ch = char.get(’char ’)
32 label += ch
33 # create list of labels and corresponding boundin boxes
34 gt. append (( label , bbox_coords ))
35

36 return gt

The function read gt kaist extract annotations from XML files with labels for
KAIST Scene Text dataset.

Function 4.4: read gt bd
1 def read_gt_bd (data , scaling_ratio =1):
2 annotations = []
3

4 with open(data , "r", encoding =’utf -8- sig ’) as file:
5 for line in file:
6 line = line. rstrip (’\n’)
7 text = line.split(",")
8 bbox_coords = np.array(
9 [[ int(text [0])* scaling_ratio , int(text [1])*

scaling_ratio ],
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10 [int(text [4])* scaling_ratio , int(text [5])*
scaling_ratio ]])

11 annotations . append (( text [-1], bbox_coords ))
12

13 return annotations

Annotations for the Born-Digital dataset are stored in simple TXT file, where
there are only four coordinates of the four corners of each bounding rectangle and a
word within the rectangele. These values are processed by the function read gt bd.

Function 4.5: read gt wien
1 def read_gt_wien (xml_file , scaling_ratio =1, resized_previously =

False):
2 # poster dataset
3 # returns labels in a tuple - first contains coordinates (8

numbers ), second word ( string )
4

5 tree = ET.parse( xml_file )
6 root = tree. getroot ()
7 image_width = root.find(’{http :// schema . primaresearch .org/PAGE/

gts/ pagecontent /2019 -07 -15} Page ’).get(’imageWidth ’)
8

9 if resized_previously :
10 scaling_ratio = scaling_ratio / int( image_width )
11

12 root.iter(’{http :// schema . primaresearch .org/PAGE/gts/
pagecontent /2019 -07 -15} TextRegion ’)

13

14 annotations = []
15 for word in root.iter(’{http :// schema . primaresearch .org/PAGE/

gts/ pagecontent /2019 -07 -15} Word ’):
16 coordinates = word.find(’{http :// schema . primaresearch .org/

PAGE/gts/ pagecontent /2019 -07 -15} Coords ’).get(’points ’)
17 text = word.find(’{http :// schema . primaresearch .org/PAGE/gts

/ pagecontent /2019 -07 -15} TextEquiv ’)
18 # extract only top left and bottom right coordinates and

apply scale
19 coords = coordinates .split(" ")
20 topL = coords [0]. split(",")
21 bottomR = coords [2]. split(",")
22 bbox_coords = np.array(
23 [[ int(int(topL [0])* scaling_ratio ), int(int(topL

[1])* scaling_ratio )],
24 [int(int( bottomR [0])* scaling_ratio ), int(int(

bottomR [1])* scaling_ratio )]])
25 annotations . append (( text [0]. text , bbox_coords ))
26

27 return annotations

The function read gt wien takes the label and coordinate values form a XML
files for the Vienna City Poster Dataset. The XML files produced by the software
Aletheia are in a format created by PRiMA Research. When going through the
XML tree an information about the research organization is embodied in the tag
names.
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Functions for Editing Images

Function 4.6: image text crop
1 def image_text_crop (images , filenames , ground_truth , one_file =True ,

result_folder =’./ results ’, skip_longer_than =40):
2 # test if there are not more gts than images
3 # else the for loop will never get to those exceeding image

count
4 gt_length = len( ground_truth )
5 if len( images ) > gt_length :
6 images = images [: gt_length ]
7

8 if not os.path.isdir( result_folder ):
9 os.mkdir( result_folder )

10

11 all_texts = []
12 for i, img in tqdm( enumerate ( images )):
13 name , ext = os.path. splitext ( filenames [i])
14

15 # count regions in one image - used for file naming
purposes

16 region = 1
17

18 for text , bbox in ground_truth [i]:
19 if text is None:
20 continue
21 if len(text) > skip_longer_than :
22 continue
23 # select image within coordinates (bbox)
24 cropped = img[bbox [0 ,1]: bbox [1,1], bbox [0 ,0]: bbox [1 ,0]]
25

26 # create image file:
27 # name in format "original -00 region .ext"
28 new_name = name + ’-’ + str( region ).zfill (3)
29

30 if np.size( cropped ):
31 cv. imwrite (os.path.join( result_folder , new_name +

ext), cropped )
32 # create text annotation file(s)
33 if one_file :
34 all_texts . append ( new_name + ext + ’\t’ + text)
35 else:
36 # one file for each image with word
37 all_texts . append ( new_name + ext + ’\t’ + text)
38 with open(os.path.join( result_folder , new_name

+ ’.gt.txt ’), ’w’) as f:
39 f.write(text)
40 region += 1
41

42 if one_file :
43 with open(os.path.join( result_folder , ’gt.txt ’), ’w’) as f:
44 for line in all_texts :
45 f. writelines (line+’\n’)
46

47 return all_texts
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The function image text crop crops and saves images based on bounding boxes
provided in ground truth for each text region in an image. This is done for all images
in images list. Also a text file is created with a corresponding text annotation. The
name of the resulted file bears the original image name and a number is attached
for each text region. The boolean parameter one file allows to save ground truths
only to a single file. Each line consists then of the name of the cropped image and
its annotation. The parameter skip longer than skips ground truths that have
more characters than stated, because some OCR tools (such as keras-OCR) does
not support long strings.

Function 4.7: shrink all
1 def shrink_all (images , width):
2 scaled = []
3

4 for image in images :
5 if image.shape [1] > width:
6 ratio = width / image.shape [1]
7 height = int(image.shape [0] * ratio)
8 new_size = (width , height )
9 scaled . append (cv. resize (image , new_size , interpolation =

cv. INTER_AREA ))
10 else:
11 scaled . append (image)
12 return scaled

The function shrink all returns a list of resized images to a given width. Images
already smaller than width are kept unaffected. The resizing aspects ratio.

Function 4.8: bounding rectangle
1 def bounding_rectangle ( coordinates ):
2 x, y = zip (* coordinates )
3

4 return np.array ([[ int(min(x)), int(min(y))], [int(max(x)), int(
max(y))]])

The function bounding rectangle Returns top left and bottom right coordinates
of a rectangle, that is circumscribed to a polygon defined by coordinates. These are
obtained from predictions for each text region.

Functions for Computing Metrics

Function 4.9: iou
1 def iou(pred_box , gt_box ):
2 # find intersection rectangle coordinates
3 x_left = max( pred_box [0][0] , gt_box [0][0])
4 x_right = min( pred_box [1][0] , gt_box [1][0])
5 y_top = max( pred_box [0][1] , gt_box [0][1])
6 y_bottom = min( pred_box [1][1] , gt_box [1][1])
7

8 if x_right < x_left or y_bottom < y_top:
9 return 0
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10

11 # compute intersection area
12 intersection = ( x_right - x_left ) * ( y_bottom - y_top)
13

14 # compute union area
15 pred_area = ( pred_box [1][0] - pred_box [0][0]) * ( pred_box [1][1]

- pred_box [0][1])
16 gt_area = ( gt_box [1][0] - gt_box [0][0]) * ( gt_box [1][1] -

gt_box [0][1])
17 union = pred_area + gt_area - intersection
18

19 # return iou
20 return intersection /union

The function iou computes intersection over union of two bounding boxes, as
defined in 1.4. Both input parameters have to contain top left and bottom right
coordinates of a bounding box rectangle.

Function 4.10: iou image
1 def iou_image (pred_boxes , gt_boxes ):
2 ious = []
3

4 # have to determine which prediction bounding box contains same
( similar )

5 # text region as ground truth bounding box
6 # find and save the best iou for a prediction box and gt box
7 for pred_ind , pred in enumerate ( pred_boxes ):
8 max_iou = 0
9 max_ind = 0

10 for gt_ind , gt in enumerate ( gt_boxes ):
11 iou_value = iou(pred , gt)
12 if ( iou_value > max_iou ):
13 max_iou = iou_value
14 max_ind = gt_ind
15

16 # match words from prediction and ground thruth ( indices )
17 ious. append (( max_iou , pred_ind , max_ind ))
18

19 return ious

The function iou image computes intersection over union for all text regions in
one image. Each parameter shall contain a list of two coordinates - (top left, bottom
right) of a bounding box rectangle. Returns a list of tuples - each tuple consists
of the highest iou value (thus having the biggest overlap), the index of predicted
bounding box and the index of ground truth bounding box. The indices are taken
from the given lists of bounding boxes or ground truths belonging to one particular
image.

Function 4.11: group text
1 def group_text (lst):
2 grouped = []
3 key = lambda x: x[2]
4

5 for k, g in itertools . groupby ( sorted (lst , key=key), key):
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6 list_data = list(zip (*g))
7 grouped . append (( sum( list_data [0]) , list_data [1], k))
8

9 return grouped

The function group text is a utility function for matching corresponding strings
in a list. The list that is passed as an argument is a list of tuples of IoUs returned
from the function iou image. First for each ground truth bounding box, which is
determined by the ground truth index (in this case the third element of the tuple)
and it is used as a key. The returned tuple consists of a sum of IoUs, a list of indices
of predicted bounding boxes and ground truth index.

Function 4.12: compare text cer
1 def compare_text_cer (text , special_characters =False , case_sensitive

=False , spaces =True , split=True):
2 text_gt , text_pred = text
3 # remove special characters and case sensitivity if necessary
4 if not spaces :
5 text_gt = "".join(char for char in text_gt if (char. isalnum

()))
6 text_pred = "".join(char for char in text_pred if (char.

isalnum ()))
7 elif not special_characters :
8 text_gt = "".join(char for char in text_gt if (char. isalnum

() or char. isspace ()))
9 text_pred = "".join(char for char in text_pred if (char.

isalnum () or char. isspace ()))
10 if not case_sensitive :
11 text_gt = text_gt .lower ()
12 text_pred = text_pred .lower ()
13

14 corresponding_words = []
15

16 if split:
17 words_gt = text_gt .split(" ")
18 words_pred = text_pred .split(" ")
19

20 # list of words that are corresponding (based on
levenshtein distance )

21 # and cer value. (= tuple of three elements )
22 # for every predicted word find its corresponding gt wordle
23 for word_pred in words_pred :
24 min_dist = (1000 , (0, 0))
25 min_gt_word = ""
26 for word_gt in words_gt :
27 l_dist = levenshtein_distance (word_gt , word_pred )
28 if l_dist [0] < min_dist [0]:
29 min_dist = l_dist
30 min_gt_word = word_gt
31 # count normalized cer (the result will be from 0 to 1)

, 1 is the worst
32 # for computation we devide Levenshtein dist. by sum
33 # of the length of the word and count of insertions

performed
34 if len( min_gt_word ) > 0 and len( word_pred ) > 0:
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35 cer = min_dist [0] / (len( min_gt_word ) + min_dist
[1][2])

36 else:
37 cer = 1
38 corresponding_words . append (( min_gt_word , word_pred , cer

))
39

40 # no split of words
41 else:
42 l_dist = levenshtein_distance (text_gt , text_pred )
43

44 if len( text_gt ) > 0 and len( text_pred ) > 0:
45 cer = l_dist [0] / (len( text_gt ) + l_dist [1][2])
46 else:
47 cer = 1
48 corresponding_words . append (( text_gt , text_pred , cer))
49

50 return sorted ( corresponding_words )

The function compare text cer returns a sorted list of corresponding words.
Each pair of corresponding words is represented as a tuple of ground truth string,
predicted string and a CER value. The first parameter have to be a tuple of a sin-
gle ground truth string and a predicted string. The argument special characters
ignores all characters except alphanumeric characters and space when False. This is
applied to both predicted and ground truth strings. When the argument case sensitive
is False then all texts are set to lowercase. The spaces parameter allows only al-
phanumeric characters and all spaces are removed. The last one of arguments is
split and it is used optionally depending on the OCR engine and on dataset.
When True, strings from ground truth and prediction are split with space used as a
separator. Then the Levenshtein distance is computed for each pair of ground truth
and predicted word. The best one is chosen for each predicted word and returned
together with the two closest words. In case of no split, the Levenshtein distance
is computed directly for the strings in the original tuple text. It is recommended
to use split when the OCR model tends to detect words that belongs to each other
as separate words and ground truth marks them as a text line with multiple words.
Or when ground truth is one-word and model predicts strings with multiple words
together.

The function levenshtein distance computes the Levenshtein distance (defini-
tion can be found in subsection 1.4). The implementation is taken from a console ap-
plication called xer. The code is available from https://github.com/jpuigcerver/
xer/blob/master/xer. It returns a tuple of counts of the three performed opera-
tions – substitution, deletion, insertion.

Other Functions

Function 4.13: correct
1 def correct (string , char_mistakes ):
2 """
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3 Find defined mistake in a string and replace it with defined
correction .

4 Returns corrected string .
5 """ correct
6

7 for oldchar , newchar in char_mistakes :
8 string = string . replace (oldchar , newchar )
9

10 return string

Function 4.14: correct german
1 def correct_german (text):
2 # For all texts correct these mistakes
3 text = correct (text , [(’iu’,’in’) ,(’LN’,’IN’)])
4

5 length = len(text)
6

7 # ! shall be at the end of the text , if not it is probably the
letter I

8 if length > 1 and text.find(’!’) != length -1:
9 text = text. replace (’!’,’I’)

10

11 # For longer texts other mistakes can be corrected
12 if length > 2:
13

14 char_mistakes = [(’{’,’f’) ,(’$’,’S’) ,(’[’,’L’) ,(’/’,’I’) ,(’|’,’
I’) ,(’ETN ’,’EIN ’),

15 (’CE’,’GE’) ,(’GH’,’CH’) ,(’GU’,’QU’) ,(’gu’,’qu’)
,(’IZ’,’TZ’),

16 (’UNO ’,’UND ’) ,(’uno ’,’und ’) ,(’Wlen ’,’Wien ’) ,(’
wlen ’,’wien ’)]

17 text = correct (text , char_mistakes )
18

19 # No Y at the begining of german words
20 if text.find(’Y’)==0:
21 text = ’V’ + text [1:]
22

23

24 # Characters that do appear in text sometimes , but usually
alongside numbers

25 # not if there are no numbers
26 char_difficult = [(’1’,’I’) ,(’{euro sign}’,’E’)]
27 for old , new in char_difficult :
28 if text.find(old) is not -1 and text. replace (’ ’,’’).

replace (old ,’’). isalpha ():
29 text = text. replace (old ,new)
30

31 if text.find(’(’) is not -1 and text.find(’)’) is -1:
32 text = text. replace (’(’,’C’)
33

34 spaces = text.count(’ ’)
35 if spaces > length /2 - 2:
36 text = text. replace (’ ’,’’)
37

38 return text
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The function returns corrected text based on typical German language syllables
and common mistakes caused by optical character recognizers.

Functions Used in Testing Scripts

For each testing method there is a function called get predicted {method name}
where the format that is returned by a particular method is converted to a spe-
cific format. This format is a tuple of (text, [upper left coordinates, bottom
right coordinates]). It is the same format as is used for ground truth.

Two following functions manipulate with the IoU and CER scores.

Function 4.15: get iou cer
1 def get_iou_cer ( ground_truth , predicted , special_chars =False ,

case_sensitivity =False , split=False):
2 iou_images = []
3 cer_images = []
4 n_imgs = len( predicted )
5

6 # loop through images :
7 for i in range( n_imgs ):
8 # separate list on columns ( iterate through tuples in the

list)
9 if len( predicted [i]) and len( ground_truth [i]):

10 predicted_cols = list(zip (* predicted [i]))
11 else:
12 iou_images . append (None)
13 cer_images . append (None)
14 continue
15 ground_truth_cols = list(zip (* ground_truth [i]))
16

17 # take only coordinate arrays from list for each images
18 pred_boxes = predicted_cols [1]
19 gt_boxes = ground_truth_cols [1]
20 iou_from_image = iou_image (pred_boxes , gt_boxes )
21 iou_text_regions = group_text ( iou_from_image )
22

23 # take only labels for each image
24 pred_labels = predicted_cols [0]
25 gt_labels = ground_truth_cols [0]
26

27 # compare corresponding labels
28 # comparison is a list of all text regions on one image
29 comparision = []
30

31 for observation in iou_text_regions :
32 gt_ind = observation [-1]
33 pred_ind = observation [1]
34 predicted_text = " ".join ([ pred_labels [i] for i in

pred_ind ])
35

36 if split:
37 gt_text = " ".join ([i for i in gt_labels if i is

not None ])
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38 else:
39 gt_text = gt_labels [ gt_ind ]
40

41 if gt_text is None or predicted_text is None:
42 continue
43

44 gt_pred_text = (gt_text , predicted_text )
45

46 # comparision for one text region (on one image)
47 comparision . append (( compare_text_cer ( gt_pred_text ,

special_characters = special_chars , case_sensitive =
case_sensitivity , split=split)))

48

49 iou_images . append (( iou_text_regions ))
50 cer_images . append (( comparision ))
51

52 return iou_images , cer_images

The function get iou cer returns IoU and CER metric for bounding boxes for
all images for each text region detected in an image. Thus there are two tuples with
the length of number of images in a dataset.

Function 4.16: get iou cer average
1 def get_iou_cer_average (iou_images , cer_images ):
2 iou_in_image = []
3 cer_in_image = []
4 n_imgs = len( iou_images )
5

6 for i in range( n_imgs ):
7 # calculate mean based on results
8 if isinstance ( cer_images [i], list):
9 length = len( cer_images [i])

10 mean_in_regions = average ([ average (list(zip (* cer_images
[i][j]))[2]) for j in range( length ) ])

11 iou_in_image . append ( average (list(zip (* iou_images [i]))
[0]))

12 else:
13 mean_in_regions = None
14 iou_in_image . append (None)
15

16 cer_in_image . append ( mean_in_regions )
17

18 return iou_in_image , cer_in_image

The function get iou cer average returns two tuples of average IoU and CER
value for each image in dataset.

Functions for Final Visualizations

Function 4.17: get results
1 def get_results (filenames , iou_in_image , cer_in_image ):
2 df_results = pd. DataFrame (list(zip(filenames , iou_in_image ,

cer_in_image )), columns =[’Filename ’, ’IoU ’, ’CER ’])
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3 mean_iou = round ( df_results [’IoU ’]. mean () * 100, 1)
4 mean_cer = round ((1 - df_results [’CER ’]. mean ()) * 100, 1)
5

6 print(f"mean IoU accuracy = { mean_iou }%, mean CER accuracy = {
mean_cer }%")

7 display ( df_results )
8

9 return mean_iou , mean_cer , df_results

The function get results prints returns average IoU and CER for the whole
dataset and a dataframe with these metrics for each image.

Function 4.18: plot results
1 def plot_results (image , ground_truth , predicted , size =15):
2 # Create figure and axes
3 figure , ax = plt. subplots ( figsize =(size , size))
4

5 # Display the image
6 ax. imshow (cv. cvtColor (image , cv. COLOR_BGR2RGB ), cmap=plt.

get_cmap (’gray ’))
7 ax.axis(’off ’)
8

9 for label , bbox in ground_truth :
10 topleft = bbox [0]
11 height = bbox [1 ,1] - bbox [0 ,1]
12 width = bbox [1 ,0] - bbox [0 ,0]
13

14 # create and add rectangle
15 rect = patches . Rectangle (( topleft ), width , height ,

linewidth =1, edgecolor =’g’, facecolor =’none ’)
16 ax. add_patch (rect)
17

18 # add labels
19 ax.text( topleft [0]+ width , topleft [1], label ,

verticalalignment =’top ’, color=’g’,fontsize =13, bbox=dict(
facecolor =’g’, alpha =0.2 , edgecolor =’g’))

20

21 for label , bbox in predicted :
22 topleft = bbox [0]
23 height = bbox [1 ,1] - bbox [0 ,1]
24 width = bbox [1 ,0] - bbox [0 ,0]
25

26 # create and add rectangle
27 rect = patches . Rectangle (( topleft ), width , height ,

linewidth =1, edgecolor =’r’, facecolor =’none ’)
28 ax. add_patch (rect)
29

30 # add labels
31 ax.text( topleft [0]-2, topleft [1]-5, label , verticalalignment =

’top ’, color=’r’,fontsize =13, bbox=dict( facecolor =’r’, alpha
=0.2 , edgecolor =’r’))

32

33 # smaller white borders
34 plt. subplots_adjust (left =0, bottom =0.1 , right =1, top =0.9 ,

wspace =0, hspace =0)
35

49



36 return plt

The function plot results returns a plot with an image and both predicted
and ground truth bounding boxes and corresponding labels. The ground truths are
marked with green color and predictions with red. Objects are drawn using the
package matplotlib.
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Chapter 5

Results

In this chapter achieved results are presented. I tested each method on four datasets
as described in chapter 3 and 4. Next I will shortly described possible setups of each
of the three methods I used in the experiments. It will be followed by discussion
of the results of test divided into sections by the four datasets. I have divided the
experiments by the four datasets and made comparisons. Prediction methods were
examined with a different setting of parameters where possible.

EasyOCR

I used the version 1.5.0 of the EasyOCR python package. The experiments were
run using a GPU. I used two different settings for EasyOCR engine – the basic
one which tends to detect and recognize text as single word objects and the second
setting merges close words together creating text lines of words that belong together.

Keras-OCR

The keras ocr-0.9.1 package for Python was used in experiments. It was necessary
to compute the predictions on GPU, due to the limited GPU on Google Colab and
the size of the images needed to be processed one by one although Keras allows to
process images in batches. Keras-OCR predictions are case insensitive, because the
default model does not support uppercase letters. I trained the Keras recognition
model on SCUT-CTW1500 dataset (on the one thousand training images), first a
trained the default model with lower case alphabet, then with the same alphabet and
a space character and finally with uppercase letters and a set of special characters.
In the results discussion it will be shown that after training the model does not offer
better results than the original model. THe original model is already very successful
and was well trained on much larger datasets.

Each of the training took about an hour on Google Colab GPU. I set 100 epochs
and an early stopping based on the value of validation loss. The validation data
were taken from the train data as 20% of the whole training part. First the I used
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early stopping after 10 non decreasing values, then after 30, but in both cases the
model could not get any better than 14% validation loss.

Tesseract

The version of Tesseract installed on Google Colab is tesseract 4.0.0-beta.1 with
leptonica-1.75.3, which means that the LSTM network is available. For testing I
used the OCR Engine mode (OEM) 3, that is Legacy + LSTM engines. As for
Page segmentation modes (PSM) I used numbers 3, 4, 6, 8 and 11, which are ”Fully
automatic page segmentation, but no OSD. (Default)”, ”Assume a single column of
text of variable sizes.”, ”Assume a single uniform block of text.”, ”Treat the image
as a single word.” and ”Sparse text. Find as much text as possible in no particular
order.” respectively. I used PSM 3 only initially and dropped it because prediction
was strongly inefficient, so it is not included in result statistics. PSM 8 was used
for testing Tesseract with CRAFT, because CRAFT crops an image into segments
where there is only one word (or a short text line), therefore Tesseract needed to
treat the image as a single word. The rest of mentioned PSMs were applied for
examining the behavior of pure Tesseract engine.

Experiments

In this section the results of experiments are divided into four parts based on the
four datasets used for testing.

In table 5.1 is explanation of terms used in experiments and result discussion.

Term Explanation
split If there is a split option, it denotes that predicted strings were

chopped into individual words separated by spaces.
no split It means that predicted string was not changed.
tuning Parameters of the model, other than the default ones, were set to

produce better predictions.
psm Page segmentation mode – a parameter for Tesseract.

Table 5.1: Explanation of terms used in experiments.
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Born-Digital

First, the Born-Digital Images dataset was tested with images in predictions and
ground truth were set to be in lowercase and all special characters except for space
were removed. There were 13 different testing runs with three tested methods. In
Figure 5.1 are the results of this testing and in Table 5.2 is corresponding information
about each run.

The best CER value was achieved by tuned EasyOCR engine, where no split
was done on predicted text (letter D in Fig. 5.1). We can see from the graph and
table, that EasyOCR and keras-OCR had significantly better results than Tesseract.
Also it can be said that tuning of EasyOCR model results in higher both IoU and
CER of approximately 20% more than with basic EasyOCR setup of parameters.
Keras-OCR performs similarly with split and no split option and in both cases gives
satisfactory results. The best IoU score was equal to 64.6% (letters G and H) and
belongs to keras-OCR model. Tuned EasyOCR can get up to 60.3% without tuning
20% lower than that.

When we compare Tesseract with its own detection model and Tesseract with
CRAFT tool, we can see that CRAFT increases the CER metric by more than
12%, however the IoU metric fluctuates for all cases around 50%. Whether the
image is in RGB color scheme or in grayscale has only a little impact on the results,
generally it differed only by about 2%. Same minor difference is when split or no
split option is set. If the Otsu thresholding was performed and the image was then
binarized, results were worse than when Tesseract itself performs the binarization.
Better results were when PSM Tesseract parameter was set to 11 rather then PSM
4.

Figure 5.1: Results of experiments performed on Born-Digital Images dataset. In-
formation about each method is in Table 5.2.

Next I performed tests with case sensitive option and with special characters
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Key Method Properties
A tesseract+CRAFT no split, psm8
B tesseract+CRAFT split, psm8
C easyOCR no split, no tuning
D easyOCR no split, tuning
E easyOCR split, no tuning
F easyOCR split, tuning
G keras-OCR no split
H keras-OCR split
I tesseract colored, no split, psm11
J tesseract binary, split, psm11
K tesseract colored, split, psm11
L tesseract binary, split, psm4
M tesseract colored, split, psm4

Table 5.2: A table of keys for methods and parameters of experiments performed
on Born-Digital Images dataset for Figure 5.1.

included, this option caused a decrease in CER value due to the fact that there
are lots of special characters and uppercase words. However, it is good to have a
recognizer that can predict more than lowercase strings even at the cost of slightly
reducing the accuracy.

SCUT-CTW1500 dataset

The SCUT-CTW1500 dataset was again first tested with predictions and ground
truth were set to be in lowercase and all special characters except for space were
removed. 14 different testing were run. In Figure 5.2 are the results of the testing
and the corresponding information about each run is in Table 5.3.

This time the best CER value (76.4%) was achieved by keras-OCR model, where
split was performed on predicted text (letter H in Fig. 5.2). It can be seen from the
graph and table, that EasyOCR and keras-OCR had again significantly better results
than Tesseract. In testing of CTW1500 dataset this time keras-OCR generally
performed better than EasyOCR in CER metric by roughly 10%. The tuning of
EasyOCR model results in lower both IoU and CER of approximately 2% less than
with basic EasyOCR setup of parameters. This might by probably due to the fact
that EasyOCR model was trained on data similar to CTW1500 dataset rather then
Born-Digital Images dataset keras-OCR performs simlarly with split and no split
option and in both cases gives satisfactory results.

The Comparison of Tesseract with its own detection model and Tesseract with
CRAFT tool shows that with CRAFT the CER metric increased by almost than
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20% as well as the IoU metric that increased by more than 30%. Plain Tesseract
results are again the worst and are not heavily influenced by color scheme or slight
scaling changes.

Figure 5.2: Results of experiments performed on CTW dataset. Information about
each method is in Table 5.3.

Key Method Properties
A tesseract+CRAFT no split
B tesseract+CRAFT split
C easyOCR nosplit, notuning
D easyOCR no split, tuning
E easyOCR split, notuning
F easyOCR split, tuning
G keras-OCR original image width, no split
H keras-OCR original image width, split
I keras-OCR original image width, split, trained spaces
J keras-OCR original image width, split, trained
K tesseract 3000px image width, no split
L tesseract color, no split, psm11
M tesseract split, psm11
N tesseract color, split, psm11

Table 5.3: A table of keys for methods and parameters of experiments performed
on SCUT-CTW1500 dataset for Figure 5.2.
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KAIST Scene Text Database

Testing of performance of the three methods on KAIST dataset with case insensi-
tivity and no special characters was done in 22 different runs. Eight of them were on
KAIST bitmap images, as these images do not have a misleading background the re-
sults are significantly better than on original photographes. The results can be seen
in Figure 5.3 and the corresponding information is in Table 5.4. The best results
on the bitmap images part of KAIST dataset were performed by EasyOCR dataset
with no splitting and CER value is 82.2% high (letter B in Fig. 5.3). This method
with the same setup is also best with KAIST dataset unedited photographs. Due
to the character of the dataset for all cases the no split option is distinctly better.

Keras-OCR had slightly lower values of CER than EasyOCR and IoU values are
even lower by generally 15%. Still it is by 20% higher than results of plain Tesseract
and comparable with Tesseract and CRAFT combination. Tesseract had this time
best but still way too low results with PSM 6. PSM 4 led to CER value as low as
18%. Color scheme did not have a distinguishable impact on the results.

Figure 5.3: Results of experiments performed on KAIST Scene Text Database.
Information about each method is in Table 5.4.
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Key Method Properties
A tesseract+CRAFT no split
B easyOCR bmp, no split, no tuning
C easyOCR bmp, no split, tuning
D easyOCR bmp, split, no tuning
E easyOCR bmp, split, tuning
F easyOCR no split, no tuning
G easyOCR no split, tuning
H easyOCR split, no tuning
I easyOCR split, tuning
J keras-OCR bmp, no split
K keras-OCR bmp, split
L keras-OCR no split
M keras-OCR split
N tesseract bmp, no split, psm11
O tesseract bmp, split, psm11
P tesseract colored, no split, psm11
Q tesseract colored, no split, psm4
R tesseract colored, no split, psm6
S tesseract no split, psm11
T tesseract colored, split, psm11
U tesseract colored, split, psm4
V tesseract split, psm11

Table 5.4: A table of keys for methods and parameters of experiments performed
on KAIST Scene Text Database for Figure 5.3.

Vienna City Poster Dataset

The Vienna City Poster Dataset was detected and recognized with the same method
as previously mentioned datasets. Even though the dataset has only a little over
250 images, it is that large that the RAM size available in Google Colab struggled
to work with the dataset as whole I had to split the dataset into two parts and
perform computations on them separately. Then I combined the corresponding
results. Specifically, the first group included first 123 images, the second the rest,
where data were sorted by name of the files.

I used different parameters that can be set in each method. However, in the
result table 5.5 and graph 5.4 I selected only the best ones within each method.
Thus the results contains thirteen CER and IoU values. In the featured results for
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all cases except one I tested only alphanumeric characters without the sensitivity to
their case.

Due to the fact that this dataset is mainly in German language, in all models I
set German as the language that is to be predicted. The defualt was English for all
models. I implemented possible language correction which takes common syllables
that appear in German. The function is described in 4.14. For some predictors these
corrections were not necessary and predicted similarly without them.

Figure 5.4: Results of experiments performed on Vienna City Poster Dataset. In-
formation about each method is in Table 5.5.

The best results were obtained by EasyOCR and keras-OCR. The highest IoU
score is equal to 75.4% and it belongs to EasyOCR method with its parameters tuned
to create tighter bounding boxes than pure EasyOCR (letters E and F in Fig. 5.4).
In this case the CER values ranged around 64% and correction for German language
was involved. Keras-OCR is responsible for the highest CER value – 69.75%, for
both with and without correction. Though the IoU value is sligtly smaller than the
best one – 74.2% (letters G-J).

As EasyOCR is able to predict also special characters and can be sensitive to case
in its result I tested the two best settings (letters E and F) with this option. The CER
scores lowered by approximately 3.5%. Which means that even with case sensitivity
and more characters the model can give very good results. In contrast with keras-
OCR which cannot predict special characters and ignores text case without training.
To gain this aibility, I trained the keras-OCR model on the Vienna Dataset. I used
the the second group of the dataset data as a training images and the first 123
images as testing ones. After seventeen minutes, which accords with twenty epochs,
the training ended, because last ten epochs the validation loss stopped decreasing.
Unfortunately the trainind dataset would need more data. After tests the IoU score
was equal to 73.2% and CER score was 72.1% without my language corrections and
with split applied to predictions. These numbers shows that keras-OCR outperforms
other models in both with simple characters and with special characters.
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Key Method Properties
A Tesseract+CRAFT split
B Tesseract+CRAFT case sensitive, includes special characters, split
C easyOCR no split, no tuning, correction
D easyOCR no split, no tuning, no correction
E easyOCR no split, tuning, correction
F easyOCR split, tuning, correction”
G keras-OCR no split, correction”
H keras-OCR no split, no correction”
I keras-OCR split, correction”
J keras-OCR split, no correction”
K tesseract no split, psm11”
L tesseract split, psm11”
M tesseract split, psm4”

Table 5.5: A table of keys for methods and parameters of experiments performed
on Vienna City Poster dataset dataset for Figure 5.4.

Tesseract (letters K-M in Fig. 5.4) performance, similarly as with other tested
datasets, was the worst. Usually the problem was caused by poor detection of the
individual words. Very often objects were detected as letters, this happens when
the PSM 11 was used. This eleventh option – find as much text as possible in no
particular order – sounds ideal, because in the posters the text mainly does not
keep an order and is present in various locations, orientations and sizes. CER values
ranged around 40%. However, PSM 4, which assumes a single column of text of
variable sizes, performed better with alike accuracy as Tesseract recognizer with
CRAFT detector or as untuned EasyOCR, CER values reached neraly up to 53%.
This comparision was unrealistic for scene text datasets.

When CRAFT package was used as a detector and cropped detected words were
sent to Tesseract recognizing tool and treated as a single word (PSM 8). Then the
CER score was equal to 53.7% (letters A and B in Fig. 5.4).

Result Conclusion

The previous section contains a discussion over achieved results. From this discussion
it can be concluded that keras-OCR and EasyOCR have the best results for all
datasets. The CER score fluctuates between 65% and 80%. The upper boundary
is very good and the lower also indicates acceptable predictions. The detection
statistics, IoU, for these two winning methods is between 63% and 75%.

It can also be concluded that Tesseract gave overall the worst results. When
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performed on scene text image data, it returned CER value usually around 20%,
on born-digital data results were around 30% and for the most important Vienna
dataset it returned values ranging from 38% to nearly 53%. However these numbers
are still lower than of any other method. When I changed the default detector
in Tesseract to CRAFT detection tool, for all datasets the IoU statistics slightly
increased and for the CER statistics a significant rise occured. In cases of SCUT-
CTW1500 dataset and KAIST Scene Text Database the CER value doubled. A
statement can be made regarding the page segmentation mode 11 of Tesseract tool
– PSM 11, used for images where we want to find as much text as possible, causes
that Tesseract finds much more words in the image and mistakes patterns for letters.
This causes that a problem when interpreting the metrics. The IoU can falsely
increase, because small false bounding boxes can cover parts of ground truth boxes
bounding some large unrecognized word.

In 5 there are examples of images selected from the Vienna City Poster Dataset.
Predictions of methods and ground truths are displayed on the images can be com-
pared with each other. I also selected in the examples a couple of images with fonts
difficult to recognize.

It is important to say that if there was a bigger labeled dataset for testing the
methods, the score values would be more precise and the very difficult fonts and
images would not have such an impact on the statistics as they did.
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Conclusion

The aim of this paper was to examine different methods of optical character recog-
nition (OCR) and test these methods on multiple datasets, including Vienna City
Poster Dataset provided by the City Library of Vienna.

First, I introduced the topic optical character recognition. I defined text detec-
tion and text recognition and described individual approaches used in both of these
task. Then I briefly mentioned types and examples of available datasets, that are re-
lated to text recognition tasks. I also described two main evaluation metrics that are
applied to text predictions. I followed up on these information when implementing
the testing of methods.

In the second chapter I expanded the widely used approach applied in OCR –
neural networks. I gradually described different types of networks from the simplest
ones to the more complex ones, that are used in OCR tools.

In the following chapter is a description od four OCR tools I had chosen for
experiments – namely CRAFT, Tesseract, EasyOCR and keras-ocr. All of them are
freely available and are accessible in Python language.

The last, most important, chapter contains a part of the implementation of
testing scripts and a discussion of achieved results. In this chapter I also described
the datasets I had selected for the experiments. I have chosen three free datasets
and I created a fully labeled dataset of 257 images from given poster data with a
manual labeling tool Aletheia.

I came up with a method of matching ground truth and predictions in image
based on two evaluation metrics – Intersection over Union and Character Error
Rate. By establishing the right match between original and predicted label I filtered
most of the mistakes caused by wrong detection. For the German language, which
is major in Vienna City Poster Dataset, I proposed possible swaps of characters in
most common German syllables.

I have chosen Python as the language in which the testing experiments are writ-
ten. Mainly to its popularity in machine learning tasks and also due to the fact
that all selected OCR tools are supported. I performed over sixty tests. I tested the
four different methods and I changed their parameters. For each dataset I provided
a statistics with results of individual methods with different settings. I have found
out that from the four free methods. EasyOCR and keras-OCR, both available as
Python packages, give the best results no matter the given dataset. At the same
time I came to a conclusion that Tesseract, a favourite OCR tool for scanned doc-
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uments, is very unsuccessful when it comes to detection and recognition of text in
images. I was able to obtain a 80% accuracy of characters in prediction compared
to the ground truth with EasyOCR software.

The general accuracy of results was around 70% when the two most successful
methods were used. This number would be more precise if the testing datasets were
larger. However, this would need more time both for humans, which manually label
the dataset and for computers to perform predictions.

Another possible improvement lies in further research and it is to extend the
ability of a recognizer to work better with a contextual information. Because as
humans we obtain this information by quickly scanning an image. For example
when posters and advertisements are considered it is probable that a product name
might occur multiple times without changes. This knowledge helps us to guess
illegible words. Neural networks used in OCR however successful still need more of
this ability to guess a result when struggling to give a precise prediction.
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Image Examples of Results

A selection of images from the Vienna City Poster Dataset is presented, with pre-
dictions and ground truth bounding boxes and labels. Red colour is for predictions
and green for ground truth. Also I added comments on used method and achieved
CER score. Some images are cropped because in the upper part of the picture is
no text and results are then better comparable. First I have chosen images with
good results and well legible text, then I have chosen images with complicated text
for detection and recognition. They are readable by a human but machines might
struggle because they remind more of images than letters, or are only half visible
and strong contextual information is needed.

In table 5.1 is explanation of terms used in experiments and result discussion.

P-117050

This image has well readable letters and for all tested models this image was not
difficult to read and only minor mistakes occurred.

Figure 5: EasyOCR, tuning on image P-117050

Figure 6: Keras-OCR, untrained on image P-117050

Figure 7: Tesseract+CRAFT on image P-117050
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(a) PSM 11

(b) PSM 4

Figure 8: Tesseract on image P-117050
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P-2638

(a) tuning

(b) no tuning

Figure 9: EasyOCR on image P-2638
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(a) Keras-OCR, trained

(b) Keras-OCR

Figure 10: Keras-OCR on image P-2638

Figure 11: Tesseract+CRAFT on image P-2638
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Figure 12: Tesseract, PSM 11 on image P-2638. Tesseract found many non existing
words and tried to predict them.

 l2638abelIm1:ex:tess11
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P-315617

(a) tuning

(b) no tuning

Figure 13: EasyOCR on image P-315617
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Figure 14: Keras-OCR, untrained on image P-315617

Figure 15: Tesseract+CRAFT on image P-315617
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(a) PSM 11 on image P-315617. Tesseract found many non existing words and tried to
predict them.

(b) PSM 4

Figure 16: Tesseract on image P-315617

74



P-236873

This image has a text that is supposed to look like northern lights in a night sky
and is not easy to read even by humans. None of the models were able to identify
the wavy text.

(a) EasyOCR (b) Tesseract+CRAFT

Figure 17: Tesseract on image P-236873
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P-229767

This image is a challenge for the detector and recognizer because there is a large
number 10. The height and width of the number is same as the dimensions of the
whole image and on top of that the number zero is not completely visible. Then
there is curved text, which is also challenging.

Figure 18: EasyOCR on image P-229767

76



P-231248

This image demonstrates that vertical text is more complicated for the recognizer
although it is quite legible.

Figure 19: EasyOCR on image P-231248
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P-310877

This image has a very specific font, which is, without former knowledge, very difficult
to recognize.

Figure 20: EasyOCR on image P-310877
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